byteXWJ commited on
Commit
6805b54
·
verified ·
1 Parent(s): 426e7e7

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-1.5B-Open-R1-GRPO
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-1.5B-Open-R1-GRPO
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="byteXWJ/Qwen2.5-1.5B-Open-R1-GRPO", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.3506326697535499,
4
+ "train_runtime": 41982.506,
5
+ "train_samples": 72441,
6
+ "train_samples_per_second": 1.726,
7
+ "train_steps_per_second": 0.015
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-1.5B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 21,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0.dev0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2fc9097478fce2d549d4e27e3927581af17d34e0351d8d0497abc8dd0b9dc13
3
+ size 3087467144
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.3506326697535499,
4
+ "train_runtime": 41982.506,
5
+ "train_samples": 72441,
6
+ "train_samples_per_second": 1.726,
7
+ "train_steps_per_second": 0.015
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,2081 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9987438399845395,
5
+ "eval_steps": 100,
6
+ "global_step": 646,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 392.36966094970705,
13
+ "epoch": 0.007730215479756498,
14
+ "grad_norm": 0.9390482577141096,
15
+ "kl": 0.00012568235397338867,
16
+ "learning_rate": 1.5384615384615387e-06,
17
+ "loss": 0.0,
18
+ "reward": 0.7186287339776755,
19
+ "reward_std": 0.5490757117047906,
20
+ "rewards/accuracy_reward": 0.16696429448202252,
21
+ "rewards/cosine_scaled_reward": -0.0902998779551126,
22
+ "rewards/format_reward": 0.46250001853331923,
23
+ "rewards/reasoning_steps_reward": 0.17946429955773055,
24
+ "step": 5
25
+ },
26
+ {
27
+ "completion_length": 365.6544815063477,
28
+ "epoch": 0.015460430959512996,
29
+ "grad_norm": 8.833524212599093,
30
+ "kl": 0.0298675537109375,
31
+ "learning_rate": 3.0769230769230774e-06,
32
+ "loss": 0.0012,
33
+ "reward": 0.7676249794661999,
34
+ "reward_std": 0.47266554515808823,
35
+ "rewards/accuracy_reward": 0.14375000735744833,
36
+ "rewards/cosine_scaled_reward": -0.0978512549365405,
37
+ "rewards/format_reward": 0.5580357387661934,
38
+ "rewards/reasoning_steps_reward": 0.16369048785418272,
39
+ "step": 10
40
+ },
41
+ {
42
+ "completion_length": 180.57322311401367,
43
+ "epoch": 0.023190646439269495,
44
+ "grad_norm": 1.7344816570791748,
45
+ "kl": 0.171295166015625,
46
+ "learning_rate": 4.615384615384616e-06,
47
+ "loss": 0.0069,
48
+ "reward": 0.8723336957395077,
49
+ "reward_std": 0.3432145787868649,
50
+ "rewards/accuracy_reward": 0.06339286053553224,
51
+ "rewards/cosine_scaled_reward": -0.08332110820629168,
52
+ "rewards/format_reward": 0.8366071864962578,
53
+ "rewards/reasoning_steps_reward": 0.055654766084626314,
54
+ "step": 15
55
+ },
56
+ {
57
+ "completion_length": 166.2580440044403,
58
+ "epoch": 0.03092086191902599,
59
+ "grad_norm": 1.3202255516946677,
60
+ "kl": 0.08023223876953126,
61
+ "learning_rate": 6.153846153846155e-06,
62
+ "loss": 0.0032,
63
+ "reward": 0.882199002802372,
64
+ "reward_std": 0.3599051775876433,
65
+ "rewards/accuracy_reward": 0.07500000409781933,
66
+ "rewards/cosine_scaled_reward": -0.06333675118803513,
67
+ "rewards/format_reward": 0.8276786141097545,
68
+ "rewards/reasoning_steps_reward": 0.042857146076858046,
69
+ "step": 20
70
+ },
71
+ {
72
+ "completion_length": 101.15804007053376,
73
+ "epoch": 0.03865107739878249,
74
+ "grad_norm": 1.6249005624090773,
75
+ "kl": 0.1916595458984375,
76
+ "learning_rate": 7.692307692307694e-06,
77
+ "loss": 0.0077,
78
+ "reward": 0.9729942634701729,
79
+ "reward_std": 0.22987019338761455,
80
+ "rewards/accuracy_reward": 0.05000000260770321,
81
+ "rewards/cosine_scaled_reward": -0.02730340599810006,
82
+ "rewards/format_reward": 0.9223214581608772,
83
+ "rewards/reasoning_steps_reward": 0.027976192627102138,
84
+ "step": 25
85
+ },
86
+ {
87
+ "completion_length": 94.2044686794281,
88
+ "epoch": 0.04638129287853899,
89
+ "grad_norm": 1.7538543203867525,
90
+ "kl": 0.36331787109375,
91
+ "learning_rate": 9.230769230769232e-06,
92
+ "loss": 0.0145,
93
+ "reward": 1.0303254418075085,
94
+ "reward_std": 0.22137819393537939,
95
+ "rewards/accuracy_reward": 0.055357145611196756,
96
+ "rewards/cosine_scaled_reward": -0.01074603625565942,
97
+ "rewards/format_reward": 0.923214315623045,
98
+ "rewards/reasoning_steps_reward": 0.06250000461004675,
99
+ "step": 30
100
+ },
101
+ {
102
+ "completion_length": 74.22143168449402,
103
+ "epoch": 0.054111508358295486,
104
+ "grad_norm": 2.008556705979058,
105
+ "kl": 0.74228515625,
106
+ "learning_rate": 1.076923076923077e-05,
107
+ "loss": 0.0297,
108
+ "reward": 1.0773570157587529,
109
+ "reward_std": 0.20800948874093592,
110
+ "rewards/accuracy_reward": 0.03125000139698386,
111
+ "rewards/cosine_scaled_reward": -0.017881136175128633,
112
+ "rewards/format_reward": 0.9267857424914837,
113
+ "rewards/reasoning_steps_reward": 0.13720238991081715,
114
+ "step": 35
115
+ },
116
+ {
117
+ "completion_length": 44.866966414451596,
118
+ "epoch": 0.06184172383805198,
119
+ "grad_norm": 1.5958148574832594,
120
+ "kl": 0.7339111328125,
121
+ "learning_rate": 1.230769230769231e-05,
122
+ "loss": 0.0294,
123
+ "reward": 1.301904872059822,
124
+ "reward_std": 0.08922360279975691,
125
+ "rewards/accuracy_reward": 0.012500000558793545,
126
+ "rewards/cosine_scaled_reward": -0.01178566825692542,
127
+ "rewards/format_reward": 0.9660714447498322,
128
+ "rewards/reasoning_steps_reward": 0.3351190730929375,
129
+ "step": 40
130
+ },
131
+ {
132
+ "completion_length": 32.241965675354,
133
+ "epoch": 0.06957193931780849,
134
+ "grad_norm": 1.7018249159830048,
135
+ "kl": 1.53359375,
136
+ "learning_rate": 1.3846153846153847e-05,
137
+ "loss": 0.0613,
138
+ "reward": 1.27698794901371,
139
+ "reward_std": 0.08601129058224614,
140
+ "rewards/accuracy_reward": 0.0026785715483129023,
141
+ "rewards/cosine_scaled_reward": -0.006940663917339407,
142
+ "rewards/format_reward": 0.9419643089175225,
143
+ "rewards/reasoning_steps_reward": 0.3392857421189547,
144
+ "step": 45
145
+ },
146
+ {
147
+ "completion_length": 16.62410787343979,
148
+ "epoch": 0.07730215479756498,
149
+ "grad_norm": 2.0636678600862,
150
+ "kl": 1.9171875,
151
+ "learning_rate": 1.5384615384615387e-05,
152
+ "loss": 0.0767,
153
+ "reward": 1.327180388569832,
154
+ "reward_std": 0.01873247450253075,
155
+ "rewards/accuracy_reward": 0.00357142873108387,
156
+ "rewards/cosine_scaled_reward": 0.00039462426211684943,
157
+ "rewards/format_reward": 0.9919642888009548,
158
+ "rewards/reasoning_steps_reward": 0.33125003390014174,
159
+ "step": 50
160
+ },
161
+ {
162
+ "completion_length": 15.018750631809235,
163
+ "epoch": 0.08503237027732148,
164
+ "grad_norm": 0.4101138858085747,
165
+ "kl": 2.75224609375,
166
+ "learning_rate": 1.6923076923076924e-05,
167
+ "loss": 0.11,
168
+ "reward": 1.3266640812158585,
169
+ "reward_std": 0.008146386814166818,
170
+ "rewards/accuracy_reward": 0.0,
171
+ "rewards/cosine_scaled_reward": -0.0022050292027415708,
172
+ "rewards/format_reward": 0.9955357164144516,
173
+ "rewards/reasoning_steps_reward": 0.3333333697170019,
174
+ "step": 55
175
+ },
176
+ {
177
+ "completion_length": 14.050893533229829,
178
+ "epoch": 0.09276258575707798,
179
+ "grad_norm": 0.6632975119048585,
180
+ "kl": 3.4400390625,
181
+ "learning_rate": 1.8461538461538465e-05,
182
+ "loss": 0.1376,
183
+ "reward": 1.319350515305996,
184
+ "reward_std": 0.016851214813584647,
185
+ "rewards/accuracy_reward": 0.0,
186
+ "rewards/cosine_scaled_reward": -0.0020780946069862694,
187
+ "rewards/format_reward": 0.9964285731315613,
188
+ "rewards/reasoning_steps_reward": 0.3250000324100256,
189
+ "step": 60
190
+ },
191
+ {
192
+ "completion_length": 90.5026834487915,
193
+ "epoch": 0.10049280123683448,
194
+ "grad_norm": 10.020830564657501,
195
+ "kl": 3.48125,
196
+ "learning_rate": 2e-05,
197
+ "loss": 0.1393,
198
+ "reward": 1.207764456421137,
199
+ "reward_std": 0.13331688460179975,
200
+ "rewards/accuracy_reward": 0.0,
201
+ "rewards/cosine_scaled_reward": -0.033902262800256724,
202
+ "rewards/format_reward": 0.9187500149011611,
203
+ "rewards/reasoning_steps_reward": 0.32291669528931377,
204
+ "step": 65
205
+ },
206
+ {
207
+ "completion_length": 51.040181362628935,
208
+ "epoch": 0.10822301671659097,
209
+ "grad_norm": 1.2114764591084524,
210
+ "kl": 3.489453125,
211
+ "learning_rate": 1.999634547413886e-05,
212
+ "loss": 0.1396,
213
+ "reward": 1.1045873086899518,
214
+ "reward_std": 0.10469552398151336,
215
+ "rewards/accuracy_reward": 0.0,
216
+ "rewards/cosine_scaled_reward": -0.015650834681582636,
217
+ "rewards/format_reward": 0.784821440745145,
218
+ "rewards/reasoning_steps_reward": 0.3354166992008686,
219
+ "step": 70
220
+ },
221
+ {
222
+ "completion_length": 386.1705480456352,
223
+ "epoch": 0.11595323219634747,
224
+ "grad_norm": 1.081250544412763,
225
+ "kl": 2.19903564453125,
226
+ "learning_rate": 1.9985384567667278e-05,
227
+ "loss": 0.088,
228
+ "reward": 1.3853926189243793,
229
+ "reward_std": 0.2650093133095652,
230
+ "rewards/accuracy_reward": 0.0008928571827709675,
231
+ "rewards/cosine_scaled_reward": -0.09764315947249998,
232
+ "rewards/format_reward": 0.6366071619093419,
233
+ "rewards/reasoning_steps_reward": 0.8455357570201159,
234
+ "step": 75
235
+ },
236
+ {
237
+ "completion_length": 995.5151908874511,
238
+ "epoch": 0.12368344767610397,
239
+ "grad_norm": 0.8658636576368606,
240
+ "kl": 0.270458984375,
241
+ "learning_rate": 1.9967125291968495e-05,
242
+ "loss": 0.0108,
243
+ "reward": 0.7942588612437248,
244
+ "reward_std": 0.11519759800285101,
245
+ "rewards/accuracy_reward": 0.0,
246
+ "rewards/cosine_scaled_reward": -0.2646697614341974,
247
+ "rewards/format_reward": 0.05892857387661934,
248
+ "rewards/reasoning_steps_reward": 1.0,
249
+ "step": 80
250
+ },
251
+ {
252
+ "completion_length": 399.2928756713867,
253
+ "epoch": 0.13141366315586048,
254
+ "grad_norm": 1.1675243662227284,
255
+ "kl": 1.223876953125,
256
+ "learning_rate": 1.9941580992841562e-05,
257
+ "loss": 0.0489,
258
+ "reward": 1.7452217385172843,
259
+ "reward_std": 0.18216142036835664,
260
+ "rewards/accuracy_reward": 0.0,
261
+ "rewards/cosine_scaled_reward": -0.12293311327230186,
262
+ "rewards/format_reward": 0.8696428865194321,
263
+ "rewards/reasoning_steps_reward": 0.9985119082033634,
264
+ "step": 85
265
+ },
266
+ {
267
+ "completion_length": 26.440179657936095,
268
+ "epoch": 0.13914387863561697,
269
+ "grad_norm": 0.8658089821111639,
270
+ "kl": 3.4791015625,
271
+ "learning_rate": 1.990877034074683e-05,
272
+ "loss": 0.1391,
273
+ "reward": 1.8058076962828635,
274
+ "reward_std": 0.1962852551096148,
275
+ "rewards/accuracy_reward": 0.0,
276
+ "rewards/cosine_scaled_reward": -0.007287628838093951,
277
+ "rewards/format_reward": 0.8803571738302708,
278
+ "rewards/reasoning_steps_reward": 0.9327381618320942,
279
+ "step": 90
280
+ },
281
+ {
282
+ "completion_length": 56.44821660518646,
283
+ "epoch": 0.14687409411537347,
284
+ "grad_norm": 0.6032597111944057,
285
+ "kl": 3.191796875,
286
+ "learning_rate": 1.9868717317159617e-05,
287
+ "loss": 0.1277,
288
+ "reward": 1.866142961382866,
289
+ "reward_std": 0.15099413888340224,
290
+ "rewards/accuracy_reward": 0.0,
291
+ "rewards/cosine_scaled_reward": -0.019869021500926464,
292
+ "rewards/format_reward": 0.9276785932481288,
293
+ "rewards/reasoning_steps_reward": 0.9583333849906921,
294
+ "step": 95
295
+ },
296
+ {
297
+ "completion_length": 190.62947311401368,
298
+ "epoch": 0.15460430959512997,
299
+ "grad_norm": 0.278335659297726,
300
+ "kl": 3.030078125,
301
+ "learning_rate": 1.9821451197042028e-05,
302
+ "loss": 0.1212,
303
+ "reward": 1.7083741463720798,
304
+ "reward_std": 0.13575071440020564,
305
+ "rewards/accuracy_reward": 0.0,
306
+ "rewards/cosine_scaled_reward": -0.06960212688427418,
307
+ "rewards/format_reward": 0.8107142995111645,
308
+ "rewards/reasoning_steps_reward": 0.96726194024086,
309
+ "step": 100
310
+ },
311
+ {
312
+ "epoch": 0.15460430959512997,
313
+ "eval_completion_length": 42.085418462753296,
314
+ "eval_kl": 3.35546875,
315
+ "eval_loss": 0.13430055975914001,
316
+ "eval_reward": 1.88418547809124,
317
+ "eval_reward_std": 0.14376993896439672,
318
+ "eval_rewards/accuracy_reward": 0.0,
319
+ "eval_rewards/cosine_scaled_reward": -0.007183671579696238,
320
+ "eval_rewards/format_reward": 0.9464285969734192,
321
+ "eval_rewards/reasoning_steps_reward": 0.944940522313118,
322
+ "eval_runtime": 19.4962,
323
+ "eval_samples_per_second": 5.078,
324
+ "eval_steps_per_second": 0.205,
325
+ "step": 100
326
+ },
327
+ {
328
+ "completion_length": 129.1232194662094,
329
+ "epoch": 0.16233452507488647,
330
+ "grad_norm": 1.4087679882993498,
331
+ "kl": 3.0447265625,
332
+ "learning_rate": 1.9767006527445728e-05,
333
+ "loss": 0.1218,
334
+ "reward": 1.803493769466877,
335
+ "reward_std": 0.21765968978722866,
336
+ "rewards/accuracy_reward": 0.0,
337
+ "rewards/cosine_scaled_reward": -0.017339627695037052,
338
+ "rewards/format_reward": 0.8535714633762836,
339
+ "rewards/reasoning_steps_reward": 0.9672619417309761,
340
+ "step": 105
341
+ },
342
+ {
343
+ "completion_length": 61.853573369979856,
344
+ "epoch": 0.17006474055464296,
345
+ "grad_norm": 0.3073740874519991,
346
+ "kl": 3.32109375,
347
+ "learning_rate": 1.9705423102261324e-05,
348
+ "loss": 0.1329,
349
+ "reward": 1.9153445169329644,
350
+ "reward_std": 0.10697445697765033,
351
+ "rewards/accuracy_reward": 0.0,
352
+ "rewards/cosine_scaled_reward": -0.016203196794958786,
353
+ "rewards/format_reward": 0.941964304447174,
354
+ "rewards/reasoning_steps_reward": 0.9895833551883697,
355
+ "step": 110
356
+ },
357
+ {
358
+ "completion_length": 32.900001358985904,
359
+ "epoch": 0.17779495603439946,
360
+ "grad_norm": 1.2224402940084464,
361
+ "kl": 3.3640625,
362
+ "learning_rate": 1.9636745933132807e-05,
363
+ "loss": 0.1346,
364
+ "reward": 1.8428309723734855,
365
+ "reward_std": 0.18514500717083138,
366
+ "rewards/accuracy_reward": 0.0,
367
+ "rewards/cosine_scaled_reward": -0.022050061996560545,
368
+ "rewards/format_reward": 0.9008928887546063,
369
+ "rewards/reasoning_steps_reward": 0.9639881268143654,
370
+ "step": 115
371
+ },
372
+ {
373
+ "completion_length": 58.67053807973862,
374
+ "epoch": 0.18552517151415596,
375
+ "grad_norm": 1.5030016268180966,
376
+ "kl": 3.31328125,
377
+ "learning_rate": 1.956102521655831e-05,
378
+ "loss": 0.1325,
379
+ "reward": 1.5131114095449447,
380
+ "reward_std": 0.2015471445057983,
381
+ "rewards/accuracy_reward": 0.0,
382
+ "rewards/cosine_scaled_reward": -0.03182920304534491,
383
+ "rewards/format_reward": 0.8651786059141159,
384
+ "rewards/reasoning_steps_reward": 0.6797619640827179,
385
+ "step": 120
386
+ },
387
+ {
388
+ "completion_length": 49.43928836584091,
389
+ "epoch": 0.19325538699391245,
390
+ "grad_norm": 9.605593016742555,
391
+ "kl": 3.896484375,
392
+ "learning_rate": 1.9478316297201218e-05,
393
+ "loss": 0.1559,
394
+ "reward": 1.6346509769558906,
395
+ "reward_std": 0.12935965392530308,
396
+ "rewards/accuracy_reward": 0.0,
397
+ "rewards/cosine_scaled_reward": -0.018325358303263782,
398
+ "rewards/format_reward": 0.9294643089175224,
399
+ "rewards/reasoning_steps_reward": 0.7235119700431824,
400
+ "step": 125
401
+ },
402
+ {
403
+ "completion_length": 164.66250653266906,
404
+ "epoch": 0.20098560247366895,
405
+ "grad_norm": 41.45434131312338,
406
+ "kl": 4.0005859375,
407
+ "learning_rate": 1.9388679627438486e-05,
408
+ "loss": 0.16,
409
+ "reward": 1.6668862670660018,
410
+ "reward_std": 0.3199146263883449,
411
+ "rewards/accuracy_reward": 0.0,
412
+ "rewards/cosine_scaled_reward": -0.06525669391849079,
413
+ "rewards/format_reward": 0.7357143245637416,
414
+ "rewards/reasoning_steps_reward": 0.9964285805821419,
415
+ "step": 130
416
+ },
417
+ {
418
+ "completion_length": 239.10536794662477,
419
+ "epoch": 0.20871581795342545,
420
+ "grad_norm": 20.949149212624942,
421
+ "kl": 4.421484375,
422
+ "learning_rate": 1.9292180723175656e-05,
423
+ "loss": 0.1769,
424
+ "reward": 1.6670863956212998,
425
+ "reward_std": 0.20173981295956764,
426
+ "rewards/accuracy_reward": 0.0,
427
+ "rewards/cosine_scaled_reward": -0.05225894197938032,
428
+ "rewards/format_reward": 0.7223214648663998,
429
+ "rewards/reasoning_steps_reward": 0.9970238178968429,
430
+ "step": 135
431
+ },
432
+ {
433
+ "completion_length": 305.64019243717195,
434
+ "epoch": 0.21644603343318194,
435
+ "grad_norm": 1.211567877000997,
436
+ "kl": 3.112890625,
437
+ "learning_rate": 1.9188890115960967e-05,
438
+ "loss": 0.1245,
439
+ "reward": 1.6698275178670883,
440
+ "reward_std": 0.12347855939142391,
441
+ "rewards/accuracy_reward": 0.0,
442
+ "rewards/cosine_scaled_reward": -0.030172577398479915,
443
+ "rewards/format_reward": 0.7000000348314643,
444
+ "rewards/reasoning_steps_reward": 1.0,
445
+ "step": 140
446
+ },
447
+ {
448
+ "completion_length": 153.34643466472625,
449
+ "epoch": 0.22417624891293844,
450
+ "grad_norm": 2.332988253148305,
451
+ "kl": 3.383984375,
452
+ "learning_rate": 1.9078883301433488e-05,
453
+ "loss": 0.1354,
454
+ "reward": 1.8375755593180656,
455
+ "reward_std": 0.13659321218001425,
456
+ "rewards/accuracy_reward": 0.0,
457
+ "rewards/cosine_scaled_reward": -0.022841239851550198,
458
+ "rewards/format_reward": 0.8607143275439739,
459
+ "rewards/reasoning_steps_reward": 0.9997023820877076,
460
+ "step": 145
461
+ },
462
+ {
463
+ "completion_length": 461.5205446720123,
464
+ "epoch": 0.23190646439269494,
465
+ "grad_norm": 17.964768544049164,
466
+ "kl": 3.4033203125,
467
+ "learning_rate": 1.8962240684142923e-05,
468
+ "loss": 0.1361,
469
+ "reward": 1.5285535104572774,
470
+ "reward_std": 0.0944752536539454,
471
+ "rewards/accuracy_reward": 0.0,
472
+ "rewards/cosine_scaled_reward": -0.021148963196901606,
473
+ "rewards/format_reward": 0.5544643050990998,
474
+ "rewards/reasoning_steps_reward": 0.9952381037175655,
475
+ "step": 150
476
+ },
477
+ {
478
+ "completion_length": 1015.0125053405761,
479
+ "epoch": 0.23963667987245144,
480
+ "grad_norm": 0.6199515139941986,
481
+ "kl": 0.829443359375,
482
+ "learning_rate": 1.883904751878156e-05,
483
+ "loss": 0.0332,
484
+ "reward": 0.952112901210785,
485
+ "reward_std": 0.06256022888337612,
486
+ "rewards/accuracy_reward": 0.0,
487
+ "rewards/cosine_scaled_reward": -0.02258952285628766,
488
+ "rewards/format_reward": 0.00357142873108387,
489
+ "rewards/reasoning_steps_reward": 0.9711309850215912,
490
+ "step": 155
491
+ },
492
+ {
493
+ "completion_length": 1024.0,
494
+ "epoch": 0.24736689535220793,
495
+ "grad_norm": 0.503878803731676,
496
+ "kl": 0.19283447265625,
497
+ "learning_rate": 1.8709393847871146e-05,
498
+ "loss": 0.0077,
499
+ "reward": 0.9781682834029197,
500
+ "reward_std": 0.03131380465492839,
501
+ "rewards/accuracy_reward": 0.0,
502
+ "rewards/cosine_scaled_reward": -0.005760333975194954,
503
+ "rewards/format_reward": 0.001785714365541935,
504
+ "rewards/reasoning_steps_reward": 0.9821428745985031,
505
+ "step": 160
506
+ },
507
+ {
508
+ "completion_length": 1024.0,
509
+ "epoch": 0.25509711083196446,
510
+ "grad_norm": 0.4904560952590957,
511
+ "kl": 0.30223388671875,
512
+ "learning_rate": 1.857337443595034e-05,
513
+ "loss": 0.0121,
514
+ "reward": 0.9860361784696579,
515
+ "reward_std": 0.02012283246149309,
516
+ "rewards/accuracy_reward": 0.0,
517
+ "rewards/cosine_scaled_reward": -0.010987673864292447,
518
+ "rewards/format_reward": 0.001785714365541935,
519
+ "rewards/reasoning_steps_reward": 0.9952380999922752,
520
+ "step": 165
521
+ },
522
+ {
523
+ "completion_length": 1023.7392860412598,
524
+ "epoch": 0.26282732631172095,
525
+ "grad_norm": 4.56651185484627,
526
+ "kl": 3.3035888671875,
527
+ "learning_rate": 1.8431088700310846e-05,
528
+ "loss": 0.1323,
529
+ "reward": 0.8368007011711598,
530
+ "reward_std": 0.07920540247578174,
531
+ "rewards/accuracy_reward": 0.0,
532
+ "rewards/cosine_scaled_reward": -0.16498505512718112,
533
+ "rewards/format_reward": 0.001785714365541935,
534
+ "rewards/reasoning_steps_reward": 1.0,
535
+ "step": 170
536
+ },
537
+ {
538
+ "completion_length": 1020.1089332580566,
539
+ "epoch": 0.27055754179147745,
540
+ "grad_norm": 51.0734022575601,
541
+ "kl": 2.13564453125,
542
+ "learning_rate": 1.8282640638332773e-05,
543
+ "loss": 0.0855,
544
+ "reward": 0.9397083148360252,
545
+ "reward_std": 0.07600208498770371,
546
+ "rewards/accuracy_reward": 0.0,
547
+ "rewards/cosine_scaled_reward": -0.0760655484162271,
548
+ "rewards/format_reward": 0.016071429289877415,
549
+ "rewards/reasoning_steps_reward": 0.9997023820877076,
550
+ "step": 175
551
+ },
552
+ {
553
+ "completion_length": 1024.0,
554
+ "epoch": 0.27828775727123395,
555
+ "grad_norm": 9.026347870282267,
556
+ "kl": 0.5303955078125,
557
+ "learning_rate": 1.8128138751472432e-05,
558
+ "loss": 0.0212,
559
+ "reward": 1.032665991783142,
560
+ "reward_std": 0.12255189336137846,
561
+ "rewards/accuracy_reward": 0.0,
562
+ "rewards/cosine_scaled_reward": -0.04769120002165437,
563
+ "rewards/format_reward": 0.08035714738070965,
564
+ "rewards/reasoning_steps_reward": 1.0,
565
+ "step": 180
566
+ },
567
+ {
568
+ "completion_length": 1024.0,
569
+ "epoch": 0.28601797275099045,
570
+ "grad_norm": 0.4517769901102366,
571
+ "kl": 0.4077880859375,
572
+ "learning_rate": 1.7967695965958044e-05,
573
+ "loss": 0.0163,
574
+ "reward": 1.5157621785998345,
575
+ "reward_std": 0.3208800745662302,
576
+ "rewards/accuracy_reward": 0.0,
577
+ "rewards/cosine_scaled_reward": -0.02798790571396239,
578
+ "rewards/format_reward": 0.5767857381142676,
579
+ "rewards/reasoning_steps_reward": 0.9669643253087997,
580
+ "step": 185
581
+ },
582
+ {
583
+ "completion_length": 1024.0,
584
+ "epoch": 0.29374818823074694,
585
+ "grad_norm": 0.4242780022201252,
586
+ "kl": 0.410595703125,
587
+ "learning_rate": 1.780142955025139e-05,
588
+ "loss": 0.0164,
589
+ "reward": 1.9678164646029472,
590
+ "reward_std": 0.04180803272465709,
591
+ "rewards/accuracy_reward": 0.0008928571827709675,
592
+ "rewards/cosine_scaled_reward": -0.009564569016220048,
593
+ "rewards/format_reward": 0.9785714380443096,
594
+ "rewards/reasoning_steps_reward": 0.9979166723787785,
595
+ "step": 190
596
+ },
597
+ {
598
+ "completion_length": 1024.0,
599
+ "epoch": 0.30147840371050344,
600
+ "grad_norm": 0.3332720853311019,
601
+ "kl": 0.345654296875,
602
+ "learning_rate": 1.7629461029335683e-05,
603
+ "loss": 0.0138,
604
+ "reward": 1.9703096732497216,
605
+ "reward_std": 0.04092628928920021,
606
+ "rewards/accuracy_reward": 0.0008928571827709675,
607
+ "rewards/cosine_scaled_reward": -0.007964215916581452,
608
+ "rewards/format_reward": 0.9848214358091354,
609
+ "rewards/reasoning_steps_reward": 0.9925595372915268,
610
+ "step": 195
611
+ },
612
+ {
613
+ "completion_length": 1024.0,
614
+ "epoch": 0.30920861919025994,
615
+ "grad_norm": 0.2795217499990793,
616
+ "kl": 0.3870361328125,
617
+ "learning_rate": 1.745191609589231e-05,
618
+ "loss": 0.0155,
619
+ "reward": 1.9680001959204674,
620
+ "reward_std": 0.041035071920487096,
621
+ "rewards/accuracy_reward": 0.0008928571827709675,
622
+ "rewards/cosine_scaled_reward": -0.01592847361753229,
623
+ "rewards/format_reward": 0.9919642895460129,
624
+ "rewards/reasoning_steps_reward": 0.9910714499652385,
625
+ "step": 200
626
+ },
627
+ {
628
+ "epoch": 0.30920861919025994,
629
+ "eval_completion_length": 1024.0,
630
+ "eval_kl": 0.381103515625,
631
+ "eval_loss": 0.015190178528428078,
632
+ "eval_reward": 1.927598088979721,
633
+ "eval_reward_std": 0.07101984624750912,
634
+ "eval_rewards/accuracy_reward": 0.0,
635
+ "eval_rewards/cosine_scaled_reward": -0.030735314125195146,
636
+ "eval_rewards/format_reward": 0.9598214477300644,
637
+ "eval_rewards/reasoning_steps_reward": 0.9985119178891182,
638
+ "eval_runtime": 61.5768,
639
+ "eval_samples_per_second": 1.608,
640
+ "eval_steps_per_second": 0.065,
641
+ "step": 200
642
+ },
643
+ {
644
+ "completion_length": 1024.0,
645
+ "epoch": 0.31693883467001643,
646
+ "grad_norm": 0.39741821896953167,
647
+ "kl": 771.5985595703125,
648
+ "learning_rate": 1.7268924518431437e-05,
649
+ "loss": 30.9403,
650
+ "reward": 1.8754769906401634,
651
+ "reward_std": 0.143933101760922,
652
+ "rewards/accuracy_reward": 0.0008928571827709675,
653
+ "rewards/cosine_scaled_reward": -0.031368333660066125,
654
+ "rewards/format_reward": 0.9098214559257031,
655
+ "rewards/reasoning_steps_reward": 0.996130958944559,
656
+ "step": 205
657
+ },
658
+ {
659
+ "completion_length": 1024.0,
660
+ "epoch": 0.32466905014977293,
661
+ "grad_norm": 0.24983284857106747,
662
+ "kl": 0.30125732421875,
663
+ "learning_rate": 1.7080620046443503e-05,
664
+ "loss": 0.0121,
665
+ "reward": 1.8183680206537247,
666
+ "reward_std": 0.2094764916575514,
667
+ "rewards/accuracy_reward": 0.0008928571827709675,
668
+ "rewards/cosine_scaled_reward": -0.03490588075947017,
669
+ "rewards/format_reward": 0.8544643260538578,
670
+ "rewards/reasoning_steps_reward": 0.9979166716337204,
671
+ "step": 210
672
+ },
673
+ {
674
+ "completion_length": 1024.0,
675
+ "epoch": 0.33239926562952943,
676
+ "grad_norm": 0.2796584952581468,
677
+ "kl": 0.2487060546875,
678
+ "learning_rate": 1.6887140312641036e-05,
679
+ "loss": 0.0099,
680
+ "reward": 1.688377882540226,
681
+ "reward_std": 0.30055564286885783,
682
+ "rewards/accuracy_reward": 0.0008928571827709675,
683
+ "rewards/cosine_scaled_reward": -0.024122193665243687,
684
+ "rewards/format_reward": 0.7116071753203869,
685
+ "rewards/reasoning_steps_reward": 1.0,
686
+ "step": 215
687
+ },
688
+ {
689
+ "completion_length": 1024.0,
690
+ "epoch": 0.3401294811092859,
691
+ "grad_norm": 0.3394156120918996,
692
+ "kl": 0.26431884765625,
693
+ "learning_rate": 1.6688626732362192e-05,
694
+ "loss": 0.0106,
695
+ "reward": 1.622536237537861,
696
+ "reward_std": 0.3328998180571944,
697
+ "rewards/accuracy_reward": 0.0008928571827709675,
698
+ "rewards/cosine_scaled_reward": -0.0631781310075894,
699
+ "rewards/format_reward": 0.6919643215835094,
700
+ "rewards/reasoning_steps_reward": 0.9928571574389935,
701
+ "step": 220
702
+ },
703
+ {
704
+ "completion_length": 1024.0,
705
+ "epoch": 0.3478596965890424,
706
+ "grad_norm": 0.12323180634844798,
707
+ "kl": 0.163543701171875,
708
+ "learning_rate": 1.6485224400209557e-05,
709
+ "loss": 0.0065,
710
+ "reward": 1.4264108300209046,
711
+ "reward_std": 0.36164557933807373,
712
+ "rewards/accuracy_reward": 0.0,
713
+ "rewards/cosine_scaled_reward": -0.045315440162085,
714
+ "rewards/format_reward": 0.4794643077999353,
715
+ "rewards/reasoning_steps_reward": 0.9922619216144085,
716
+ "step": 225
717
+ },
718
+ {
719
+ "completion_length": 1024.0,
720
+ "epoch": 0.3555899120687989,
721
+ "grad_norm": 1.1461722123281664,
722
+ "kl": 0.20413818359375,
723
+ "learning_rate": 1.6277081983999742e-05,
724
+ "loss": 0.0082,
725
+ "reward": 1.5457165658473968,
726
+ "reward_std": 0.2846676936373115,
727
+ "rewards/accuracy_reward": 0.0,
728
+ "rewards/cosine_scaled_reward": -0.16886685080826283,
729
+ "rewards/format_reward": 0.7214285962283611,
730
+ "rewards/reasoning_steps_reward": 0.9931547753512859,
731
+ "step": 230
732
+ },
733
+ {
734
+ "completion_length": 1024.0,
735
+ "epoch": 0.3633201275485554,
736
+ "grad_norm": 0.28315172743754835,
737
+ "kl": 0.27060546875,
738
+ "learning_rate": 1.6064351616101318e-05,
739
+ "loss": 0.0108,
740
+ "reward": 1.8082718402147293,
741
+ "reward_std": 0.11225779644446447,
742
+ "rewards/accuracy_reward": 0.0,
743
+ "rewards/cosine_scaled_reward": -0.13309730420587584,
744
+ "rewards/format_reward": 0.9812500089406967,
745
+ "rewards/reasoning_steps_reward": 0.96011907979846,
746
+ "step": 235
747
+ },
748
+ {
749
+ "completion_length": 1024.0,
750
+ "epoch": 0.3710503430283119,
751
+ "grad_norm": 0.23337110623082213,
752
+ "kl": 0.2306396484375,
753
+ "learning_rate": 1.5847188782240473e-05,
754
+ "loss": 0.0092,
755
+ "reward": 1.8728422731161118,
756
+ "reward_std": 0.1430520822061226,
757
+ "rewards/accuracy_reward": 0.0,
758
+ "rewards/cosine_scaled_reward": -0.028943523665657268,
759
+ "rewards/format_reward": 0.9071428924798965,
760
+ "rewards/reasoning_steps_reward": 0.9946428649127483,
761
+ "step": 240
762
+ },
763
+ {
764
+ "completion_length": 1024.0,
765
+ "epoch": 0.3787805585080684,
766
+ "grad_norm": 0.18427188675046358,
767
+ "kl": 0.2426513671875,
768
+ "learning_rate": 1.562575220785569e-05,
769
+ "loss": 0.0097,
770
+ "reward": 1.8290013462305068,
771
+ "reward_std": 0.19572628067107872,
772
+ "rewards/accuracy_reward": 0.0008928571827709675,
773
+ "rewards/cosine_scaled_reward": -0.018320175528060645,
774
+ "rewards/format_reward": 0.8848214596509933,
775
+ "rewards/reasoning_steps_reward": 0.9616071864962578,
776
+ "step": 245
777
+ },
778
+ {
779
+ "completion_length": 1024.0,
780
+ "epoch": 0.3865107739878249,
781
+ "grad_norm": 0.21464170252675563,
782
+ "kl": 0.24188232421875,
783
+ "learning_rate": 1.5400203742084508e-05,
784
+ "loss": 0.0097,
785
+ "reward": 1.9442964002490044,
786
+ "reward_std": 0.07978458781144582,
787
+ "rewards/accuracy_reward": 0.00357142873108387,
788
+ "rewards/cosine_scaled_reward": -0.016715598275186493,
789
+ "rewards/format_reward": 0.9883928626775742,
790
+ "rewards/reasoning_steps_reward": 0.9690476559102535,
791
+ "step": 250
792
+ },
793
+ {
794
+ "completion_length": 1023.6294647216797,
795
+ "epoch": 0.3942409894675814,
796
+ "grad_norm": 0.2407491270261808,
797
+ "kl": 0.26353759765625,
798
+ "learning_rate": 1.5170708239467143e-05,
799
+ "loss": 0.0105,
800
+ "reward": 1.9458773970603942,
801
+ "reward_std": 0.07613754472695292,
802
+ "rewards/accuracy_reward": 0.00357142873108387,
803
+ "rewards/cosine_scaled_reward": -0.03537268368527293,
804
+ "rewards/format_reward": 0.9883928626775742,
805
+ "rewards/reasoning_steps_reward": 0.989285732805729,
806
+ "step": 255
807
+ },
808
+ {
809
+ "completion_length": 1014.4705436706543,
810
+ "epoch": 0.4019712049473379,
811
+ "grad_norm": 0.3467057009002833,
812
+ "kl": 0.3231689453125,
813
+ "learning_rate": 1.4937433439453465e-05,
814
+ "loss": 0.0129,
815
+ "reward": 1.8792840793728829,
816
+ "reward_std": 0.1289262903505005,
817
+ "rewards/accuracy_reward": 0.0026785715483129023,
818
+ "rewards/cosine_scaled_reward": -0.06268029478378594,
819
+ "rewards/format_reward": 0.9517857365310192,
820
+ "rewards/reasoning_steps_reward": 0.9875000208616257,
821
+ "step": 260
822
+ },
823
+ {
824
+ "completion_length": 198.87232966423034,
825
+ "epoch": 0.4097014204270944,
826
+ "grad_norm": 1.889219820728968,
827
+ "kl": 1.1971435546875,
828
+ "learning_rate": 1.4700549843801359e-05,
829
+ "loss": 0.0479,
830
+ "reward": 1.617885561287403,
831
+ "reward_std": 0.18369729482219554,
832
+ "rewards/accuracy_reward": 0.001785714365541935,
833
+ "rewards/cosine_scaled_reward": -0.09044785196310841,
834
+ "rewards/format_reward": 0.9500000230967999,
835
+ "rewards/reasoning_steps_reward": 0.7565476797521115,
836
+ "step": 265
837
+ },
838
+ {
839
+ "completion_length": 61.36785981655121,
840
+ "epoch": 0.4174316359068509,
841
+ "grad_norm": 1.5439650810408614,
842
+ "kl": 2.06083984375,
843
+ "learning_rate": 1.4460230591956097e-05,
844
+ "loss": 0.0824,
845
+ "reward": 1.7324005201458932,
846
+ "reward_std": 0.1723117540634121,
847
+ "rewards/accuracy_reward": 0.0,
848
+ "rewards/cosine_scaled_reward": -0.07265909540001303,
849
+ "rewards/format_reward": 0.8964285887777805,
850
+ "rewards/reasoning_steps_reward": 0.9086310066282749,
851
+ "step": 270
852
+ },
853
+ {
854
+ "completion_length": 30.82410855293274,
855
+ "epoch": 0.4251618513866074,
856
+ "grad_norm": 1.5711994372600742,
857
+ "kl": 2.94609375,
858
+ "learning_rate": 1.421665133450184e-05,
859
+ "loss": 0.1178,
860
+ "reward": 1.8442469641566277,
861
+ "reward_std": 0.172434140794212,
862
+ "rewards/accuracy_reward": 0.0,
863
+ "rewards/cosine_scaled_reward": -0.020038836018647997,
864
+ "rewards/format_reward": 0.9116071671247482,
865
+ "rewards/reasoning_steps_reward": 0.9526786282658577,
866
+ "step": 275
867
+ },
868
+ {
869
+ "completion_length": 31.485715675354005,
870
+ "epoch": 0.4328920668663639,
871
+ "grad_norm": 1.254143062627419,
872
+ "kl": 3.3177734375,
873
+ "learning_rate": 1.3969990104777712e-05,
874
+ "loss": 0.1327,
875
+ "reward": 1.9396235466003418,
876
+ "reward_std": 0.07859349314680912,
877
+ "rewards/accuracy_reward": 0.0008928571827709675,
878
+ "rewards/cosine_scaled_reward": -0.019305108429398386,
879
+ "rewards/format_reward": 0.9723214410245419,
880
+ "rewards/reasoning_steps_reward": 0.985714317113161,
881
+ "step": 280
882
+ },
883
+ {
884
+ "completion_length": 112.89821949005128,
885
+ "epoch": 0.4406222823461204,
886
+ "grad_norm": 1.7486323762646898,
887
+ "kl": 3.2439453125,
888
+ "learning_rate": 1.3720427188752306e-05,
889
+ "loss": 0.1297,
890
+ "reward": 1.8264620706439019,
891
+ "reward_std": 0.17633500225992976,
892
+ "rewards/accuracy_reward": 0.0,
893
+ "rewards/cosine_scaled_reward": -0.02085943255224265,
894
+ "rewards/format_reward": 0.8508928880095482,
895
+ "rewards/reasoning_steps_reward": 0.9964285835623741,
896
+ "step": 285
897
+ },
898
+ {
899
+ "completion_length": 85.93482549190522,
900
+ "epoch": 0.4483524978258769,
901
+ "grad_norm": 0.18585642120389043,
902
+ "kl": 3.4283203125,
903
+ "learning_rate": 1.3468144993251735e-05,
904
+ "loss": 0.1372,
905
+ "reward": 1.9039041504263878,
906
+ "reward_std": 0.11914442183588107,
907
+ "rewards/accuracy_reward": 0.0,
908
+ "rewards/cosine_scaled_reward": -0.008595946489367633,
909
+ "rewards/format_reward": 0.9250000327825546,
910
+ "rewards/reasoning_steps_reward": 0.9875000223517418,
911
+ "step": 290
912
+ },
913
+ {
914
+ "completion_length": 68.39286019802094,
915
+ "epoch": 0.4560827133056334,
916
+ "grad_norm": 0.6138249675103672,
917
+ "kl": 3.4900390625,
918
+ "learning_rate": 1.3213327912637563e-05,
919
+ "loss": 0.1396,
920
+ "reward": 1.9247175946831703,
921
+ "reward_std": 0.09705542341289401,
922
+ "rewards/accuracy_reward": 0.0,
923
+ "rewards/cosine_scaled_reward": -0.005044402932981029,
924
+ "rewards/format_reward": 0.9473214514553547,
925
+ "rewards/reasoning_steps_reward": 0.9824405036866665,
926
+ "step": 295
927
+ },
928
+ {
929
+ "completion_length": 92.07054011821747,
930
+ "epoch": 0.4638129287853899,
931
+ "grad_norm": 17.64447481437311,
932
+ "kl": 6.3109375,
933
+ "learning_rate": 1.295616219403197e-05,
934
+ "loss": 0.2532,
935
+ "reward": 1.8822270065546036,
936
+ "reward_std": 0.15449890223480905,
937
+ "rewards/accuracy_reward": 0.0,
938
+ "rewards/cosine_scaled_reward": -0.007951658876845614,
939
+ "rewards/format_reward": 0.9205357454717159,
940
+ "rewards/reasoning_steps_reward": 0.9696429014205933,
941
+ "step": 300
942
+ },
943
+ {
944
+ "epoch": 0.4638129287853899,
945
+ "eval_completion_length": 53.17351460456848,
946
+ "eval_kl": 3.720703125,
947
+ "eval_loss": 0.14936980605125427,
948
+ "eval_reward": 1.9487695544958115,
949
+ "eval_reward_std": 0.06659787986427546,
950
+ "eval_rewards/accuracy_reward": 0.0,
951
+ "eval_rewards/cosine_scaled_reward": -0.006587653420865536,
952
+ "eval_rewards/format_reward": 0.9642857313156128,
953
+ "eval_rewards/reasoning_steps_reward": 0.9910714626312256,
954
+ "eval_runtime": 27.7064,
955
+ "eval_samples_per_second": 3.573,
956
+ "eval_steps_per_second": 0.144,
957
+ "step": 300
958
+ },
959
+ {
960
+ "completion_length": 48.73571631908417,
961
+ "epoch": 0.4715431442651464,
962
+ "grad_norm": 0.5068156353598838,
963
+ "kl": 3.772265625,
964
+ "learning_rate": 1.2696835801188816e-05,
965
+ "loss": 0.1509,
966
+ "reward": 1.9468622133135796,
967
+ "reward_std": 0.06508203058242543,
968
+ "rewards/accuracy_reward": 0.0,
969
+ "rewards/cosine_scaled_reward": -0.005816462484654039,
970
+ "rewards/format_reward": 0.9642857305705548,
971
+ "rewards/reasoning_steps_reward": 0.9883928790688514,
972
+ "step": 305
973
+ },
974
+ {
975
+ "completion_length": 43.2633944272995,
976
+ "epoch": 0.47927335974490287,
977
+ "grad_norm": 0.3176925953315301,
978
+ "kl": 3.947265625,
979
+ "learning_rate": 1.2435538277109919e-05,
980
+ "loss": 0.1578,
981
+ "reward": 1.9513282284140587,
982
+ "reward_std": 0.059372010298375244,
983
+ "rewards/accuracy_reward": 0.0,
984
+ "rewards/cosine_scaled_reward": -0.010576637217309327,
985
+ "rewards/format_reward": 0.9714285850524902,
986
+ "rewards/reasoning_steps_reward": 0.9904762081801891,
987
+ "step": 310
988
+ },
989
+ {
990
+ "completion_length": 39.936609101295474,
991
+ "epoch": 0.48700357522465937,
992
+ "grad_norm": 0.6443106715438625,
993
+ "kl": 3.9490234375,
994
+ "learning_rate": 1.2172460605507126e-05,
995
+ "loss": 0.1579,
996
+ "reward": 1.9332506194710732,
997
+ "reward_std": 0.08854502255671833,
998
+ "rewards/accuracy_reward": 0.0,
999
+ "rewards/cosine_scaled_reward": -0.014070913463365286,
1000
+ "rewards/format_reward": 0.963392873108387,
1001
+ "rewards/reasoning_steps_reward": 0.9839286029338836,
1002
+ "step": 315
1003
+ },
1004
+ {
1005
+ "completion_length": 52.19107358455658,
1006
+ "epoch": 0.49473379070441587,
1007
+ "grad_norm": 0.7546037355193578,
1008
+ "kl": 4.55859375,
1009
+ "learning_rate": 1.19077950712113e-05,
1010
+ "loss": 0.1824,
1011
+ "reward": 1.8329863145947456,
1012
+ "reward_std": 0.2112982230493799,
1013
+ "rewards/accuracy_reward": 0.0,
1014
+ "rewards/cosine_scaled_reward": -0.0262399717932567,
1015
+ "rewards/format_reward": 0.9071428939700127,
1016
+ "rewards/reasoning_steps_reward": 0.9520833820104599,
1017
+ "step": 320
1018
+ },
1019
+ {
1020
+ "completion_length": 43.95535898208618,
1021
+ "epoch": 0.5024640061841724,
1022
+ "grad_norm": 1.7212994430025008,
1023
+ "kl": 4.2908203125,
1024
+ "learning_rate": 1.1641735119630373e-05,
1025
+ "loss": 0.1716,
1026
+ "reward": 1.8960628926753997,
1027
+ "reward_std": 0.13772980722906142,
1028
+ "rewards/accuracy_reward": 0.0,
1029
+ "rewards/cosine_scaled_reward": -0.016139589733211324,
1030
+ "rewards/format_reward": 0.9419643118977546,
1031
+ "rewards/reasoning_steps_reward": 0.9702381290495395,
1032
+ "step": 325
1033
+ },
1034
+ {
1035
+ "completion_length": 88.43839681148529,
1036
+ "epoch": 0.5101942216639289,
1037
+ "grad_norm": 2.833261374391085,
1038
+ "kl": 4.2220703125,
1039
+ "learning_rate": 1.137447521535908e-05,
1040
+ "loss": 0.1689,
1041
+ "reward": 1.8282963901758194,
1042
+ "reward_std": 0.19430164659138427,
1043
+ "rewards/accuracy_reward": 0.0,
1044
+ "rewards/cosine_scaled_reward": -0.025275125188636595,
1045
+ "rewards/format_reward": 0.8919643208384513,
1046
+ "rewards/reasoning_steps_reward": 0.9616071946918965,
1047
+ "step": 330
1048
+ },
1049
+ {
1050
+ "completion_length": 66.55982444286346,
1051
+ "epoch": 0.5179244371436854,
1052
+ "grad_norm": 0.6221989550919217,
1053
+ "kl": 4.0482421875,
1054
+ "learning_rate": 1.110621070004378e-05,
1055
+ "loss": 0.1619,
1056
+ "reward": 1.8733744263648986,
1057
+ "reward_std": 0.16404558259237093,
1058
+ "rewards/accuracy_reward": 0.0,
1059
+ "rewards/cosine_scaled_reward": -0.021268530780798756,
1060
+ "rewards/format_reward": 0.9267857410013676,
1061
+ "rewards/reasoning_steps_reward": 0.9678571939468383,
1062
+ "step": 335
1063
+ },
1064
+ {
1065
+ "completion_length": 70.68839602470398,
1066
+ "epoch": 0.5256546526234419,
1067
+ "grad_norm": 1.497593841474171,
1068
+ "kl": 3.9134765625,
1069
+ "learning_rate": 1.0837137649606241e-05,
1070
+ "loss": 0.1565,
1071
+ "reward": 1.8916518941521645,
1072
+ "reward_std": 0.14140696468043643,
1073
+ "rewards/accuracy_reward": 0.0,
1074
+ "rewards/cosine_scaled_reward": -0.02441962165758014,
1075
+ "rewards/format_reward": 0.9410714536905289,
1076
+ "rewards/reasoning_steps_reward": 0.9750000379979611,
1077
+ "step": 340
1078
+ },
1079
+ {
1080
+ "completion_length": 89.36161134243011,
1081
+ "epoch": 0.5333848681031984,
1082
+ "grad_norm": 0.35372687668193753,
1083
+ "kl": 3.51796875,
1084
+ "learning_rate": 1.0567452730930743e-05,
1085
+ "loss": 0.1407,
1086
+ "reward": 1.8679632544517517,
1087
+ "reward_std": 0.1587062255845922,
1088
+ "rewards/accuracy_reward": 0.0,
1089
+ "rewards/cosine_scaled_reward": -0.03739399563637562,
1090
+ "rewards/format_reward": 0.9312500260770321,
1091
+ "rewards/reasoning_steps_reward": 0.9741071820259094,
1092
+ "step": 345
1093
+ },
1094
+ {
1095
+ "completion_length": 71.34107451438904,
1096
+ "epoch": 0.5411150835829549,
1097
+ "grad_norm": 0.5702206180346077,
1098
+ "kl": 3.4873046875,
1099
+ "learning_rate": 1.0297353058119209e-05,
1100
+ "loss": 0.1395,
1101
+ "reward": 1.8956190168857574,
1102
+ "reward_std": 0.13545800935062288,
1103
+ "rewards/accuracy_reward": 0.0,
1104
+ "rewards/cosine_scaled_reward": -0.030273928574752064,
1105
+ "rewards/format_reward": 0.951785734295845,
1106
+ "rewards/reasoning_steps_reward": 0.9741071708500385,
1107
+ "step": 350
1108
+ },
1109
+ {
1110
+ "completion_length": 72.94018166065216,
1111
+ "epoch": 0.5488452990627114,
1112
+ "grad_norm": 0.196755343328829,
1113
+ "kl": 3.54375,
1114
+ "learning_rate": 1.0027036048419514e-05,
1115
+ "loss": 0.1417,
1116
+ "reward": 1.8875077337026596,
1117
+ "reward_std": 0.1440115618094751,
1118
+ "rewards/accuracy_reward": 0.0,
1119
+ "rewards/cosine_scaled_reward": -0.030944747471949086,
1120
+ "rewards/format_reward": 0.9455357365310192,
1121
+ "rewards/reasoning_steps_reward": 0.9729167051613331,
1122
+ "step": 355
1123
+ },
1124
+ {
1125
+ "completion_length": 54.92678787708282,
1126
+ "epoch": 0.5565755145424679,
1127
+ "grad_norm": 0.2567810162757019,
1128
+ "kl": 3.3958984375,
1129
+ "learning_rate": 9.756699277932196e-06,
1130
+ "loss": 0.1358,
1131
+ "reward": 1.9269503444433211,
1132
+ "reward_std": 0.0966148825835262,
1133
+ "rewards/accuracy_reward": 0.0,
1134
+ "rewards/cosine_scaled_reward": -0.0221569019544404,
1135
+ "rewards/format_reward": 0.963392873108387,
1136
+ "rewards/reasoning_steps_reward": 0.9857143104076386,
1137
+ "step": 360
1138
+ },
1139
+ {
1140
+ "completion_length": 72.01518182754516,
1141
+ "epoch": 0.5643057300222244,
1142
+ "grad_norm": 0.1829959012401895,
1143
+ "kl": 3.1505859375,
1144
+ "learning_rate": 9.486540337201046e-06,
1145
+ "loss": 0.126,
1146
+ "reward": 1.8959941297769547,
1147
+ "reward_std": 0.13998180008102282,
1148
+ "rewards/accuracy_reward": 0.0,
1149
+ "rewards/cosine_scaled_reward": -0.030494074343005197,
1150
+ "rewards/format_reward": 0.9482143081724643,
1151
+ "rewards/reasoning_steps_reward": 0.9782738350331783,
1152
+ "step": 365
1153
+ },
1154
+ {
1155
+ "completion_length": 64.86786003112793,
1156
+ "epoch": 0.5720359455019809,
1157
+ "grad_norm": 0.2587368698858213,
1158
+ "kl": 3.344140625,
1159
+ "learning_rate": 9.216756686793163e-06,
1160
+ "loss": 0.1338,
1161
+ "reward": 1.9080506026744843,
1162
+ "reward_std": 0.12041498598309772,
1163
+ "rewards/accuracy_reward": 0.0,
1164
+ "rewards/cosine_scaled_reward": -0.027068544877693057,
1165
+ "rewards/format_reward": 0.9571428768336773,
1166
+ "rewards/reasoning_steps_reward": 0.9779762201011181,
1167
+ "step": 370
1168
+ },
1169
+ {
1170
+ "completion_length": 79.13750350475311,
1171
+ "epoch": 0.5797661609817374,
1172
+ "grad_norm": 0.6472814862064507,
1173
+ "kl": 3.48828125,
1174
+ "learning_rate": 8.94754551297402e-06,
1175
+ "loss": 0.1395,
1176
+ "reward": 1.87237848341465,
1177
+ "reward_std": 0.16542400652033393,
1178
+ "rewards/accuracy_reward": 0.0,
1179
+ "rewards/cosine_scaled_reward": -0.033871618512785064,
1180
+ "rewards/format_reward": 0.9375000268220901,
1181
+ "rewards/reasoning_steps_reward": 0.9687500350177288,
1182
+ "step": 375
1183
+ },
1184
+ {
1185
+ "completion_length": 73.87143204212188,
1186
+ "epoch": 0.5874963764614939,
1187
+ "grad_norm": 0.2300340441130014,
1188
+ "kl": 3.5958984375,
1189
+ "learning_rate": 8.67910358358298e-06,
1190
+ "loss": 0.1438,
1191
+ "reward": 1.8885457441210747,
1192
+ "reward_std": 0.13497921331181714,
1193
+ "rewards/accuracy_reward": 0.0008928571827709675,
1194
+ "rewards/cosine_scaled_reward": -0.03079959342139773,
1195
+ "rewards/format_reward": 0.945535734295845,
1196
+ "rewards/reasoning_steps_reward": 0.972916702926159,
1197
+ "step": 380
1198
+ },
1199
+ {
1200
+ "completion_length": 73.79464621543885,
1201
+ "epoch": 0.5952265919412504,
1202
+ "grad_norm": 0.18795751532079963,
1203
+ "kl": 3.540234375,
1204
+ "learning_rate": 8.411627104214675e-06,
1205
+ "loss": 0.1416,
1206
+ "reward": 1.8874747961759568,
1207
+ "reward_std": 0.14899413716896107,
1208
+ "rewards/accuracy_reward": 0.0,
1209
+ "rewards/cosine_scaled_reward": -0.03127530172932893,
1210
+ "rewards/format_reward": 0.9446428820490838,
1211
+ "rewards/reasoning_steps_reward": 0.9741071827709675,
1212
+ "step": 385
1213
+ },
1214
+ {
1215
+ "completion_length": 76.45803918838502,
1216
+ "epoch": 0.6029568074210069,
1217
+ "grad_norm": 0.2560833861847512,
1218
+ "kl": 3.5017578125,
1219
+ "learning_rate": 8.145311574811325e-06,
1220
+ "loss": 0.14,
1221
+ "reward": 1.8978156805038453,
1222
+ "reward_std": 0.1357477414895129,
1223
+ "rewards/accuracy_reward": 0.0,
1224
+ "rewards/cosine_scaled_reward": -0.032541560102254154,
1225
+ "rewards/format_reward": 0.9526785925030709,
1226
+ "rewards/reasoning_steps_reward": 0.9776786133646965,
1227
+ "step": 390
1228
+ },
1229
+ {
1230
+ "completion_length": 61.17500262260437,
1231
+ "epoch": 0.6106870229007634,
1232
+ "grad_norm": 0.14156843477971917,
1233
+ "kl": 3.583984375,
1234
+ "learning_rate": 7.880351646770824e-06,
1235
+ "loss": 0.1433,
1236
+ "reward": 1.9174254342913628,
1237
+ "reward_std": 0.11136556981223293,
1238
+ "rewards/accuracy_reward": 0.0008928571827709675,
1239
+ "rewards/cosine_scaled_reward": -0.024241326967603526,
1240
+ "rewards/format_reward": 0.958035734295845,
1241
+ "rewards/reasoning_steps_reward": 0.9827381305396556,
1242
+ "step": 395
1243
+ },
1244
+ {
1245
+ "completion_length": 69.2750031709671,
1246
+ "epoch": 0.6184172383805199,
1247
+ "grad_norm": 0.5154686075500935,
1248
+ "kl": 3.551953125,
1249
+ "learning_rate": 7.616940980675004e-06,
1250
+ "loss": 0.1421,
1251
+ "reward": 1.891478382050991,
1252
+ "reward_std": 0.13758877764275895,
1253
+ "rewards/accuracy_reward": 0.0,
1254
+ "rewards/cosine_scaled_reward": -0.029057439247844742,
1255
+ "rewards/format_reward": 0.9482143096625805,
1256
+ "rewards/reasoning_steps_reward": 0.9723214752972126,
1257
+ "step": 400
1258
+ },
1259
+ {
1260
+ "epoch": 0.6184172383805199,
1261
+ "eval_completion_length": 107.8214340209961,
1262
+ "eval_kl": 3.58203125,
1263
+ "eval_loss": 0.14280247688293457,
1264
+ "eval_reward": 1.8317049890756607,
1265
+ "eval_reward_std": 0.19036237383261323,
1266
+ "eval_rewards/accuracy_reward": 0.0,
1267
+ "eval_rewards/cosine_scaled_reward": -0.047759354987647384,
1268
+ "eval_rewards/format_reward": 0.9107143208384514,
1269
+ "eval_rewards/reasoning_steps_reward": 0.9687500298023224,
1270
+ "eval_runtime": 35.747,
1271
+ "eval_samples_per_second": 2.769,
1272
+ "eval_steps_per_second": 0.112,
1273
+ "step": 400
1274
+ },
1275
+ {
1276
+ "completion_length": 63.0035742521286,
1277
+ "epoch": 0.6261474538602764,
1278
+ "grad_norm": 0.04709338457327443,
1279
+ "kl": 3.5291015625,
1280
+ "learning_rate": 7.355272104742132e-06,
1281
+ "loss": 0.1412,
1282
+ "reward": 1.9105920106172563,
1283
+ "reward_std": 0.12058914793014992,
1284
+ "rewards/accuracy_reward": 0.0,
1285
+ "rewards/cosine_scaled_reward": -0.026015246647875755,
1286
+ "rewards/format_reward": 0.9544643066823483,
1287
+ "rewards/reasoning_steps_reward": 0.9821428917348385,
1288
+ "step": 405
1289
+ },
1290
+ {
1291
+ "completion_length": 58.422323846817015,
1292
+ "epoch": 0.6338776693400329,
1293
+ "grad_norm": 0.18715535959210597,
1294
+ "kl": 3.5099609375,
1295
+ "learning_rate": 7.095536274107046e-06,
1296
+ "loss": 0.1404,
1297
+ "reward": 1.917353543639183,
1298
+ "reward_std": 0.11102688768487497,
1299
+ "rewards/accuracy_reward": 0.0,
1300
+ "rewards/cosine_scaled_reward": -0.023717991745797917,
1301
+ "rewards/format_reward": 0.9589285902678967,
1302
+ "rewards/reasoning_steps_reward": 0.9821428820490837,
1303
+ "step": 410
1304
+ },
1305
+ {
1306
+ "completion_length": 72.81786034107208,
1307
+ "epoch": 0.6416078848197894,
1308
+ "grad_norm": 0.1071854451049798,
1309
+ "kl": 3.4794921875,
1310
+ "learning_rate": 6.837923331031761e-06,
1311
+ "loss": 0.1392,
1312
+ "reward": 1.8966768980026245,
1313
+ "reward_std": 0.13567318589484784,
1314
+ "rewards/accuracy_reward": 0.0,
1315
+ "rewards/cosine_scaled_reward": -0.03070416395785287,
1316
+ "rewards/format_reward": 0.9473214507102966,
1317
+ "rewards/reasoning_steps_reward": 0.9800595581531525,
1318
+ "step": 415
1319
+ },
1320
+ {
1321
+ "completion_length": 97.09911193847657,
1322
+ "epoch": 0.6493381002995459,
1323
+ "grad_norm": 0.2244006344733829,
1324
+ "kl": 3.446484375,
1325
+ "learning_rate": 6.58262156614881e-06,
1326
+ "loss": 0.1378,
1327
+ "reward": 1.85521010607481,
1328
+ "reward_std": 0.187637352827187,
1329
+ "rewards/accuracy_reward": 0.0,
1330
+ "rewards/cosine_scaled_reward": -0.042409035906894134,
1331
+ "rewards/format_reward": 0.9232143186032772,
1332
+ "rewards/reasoning_steps_reward": 0.9744048126041889,
1333
+ "step": 420
1334
+ },
1335
+ {
1336
+ "completion_length": 89.34196858406067,
1337
+ "epoch": 0.6570683157793024,
1338
+ "grad_norm": 0.12727317452906473,
1339
+ "kl": 3.47890625,
1340
+ "learning_rate": 6.3298175808386284e-06,
1341
+ "loss": 0.1391,
1342
+ "reward": 1.8599596157670022,
1343
+ "reward_std": 0.1839674000402738,
1344
+ "rewards/accuracy_reward": 0.0,
1345
+ "rewards/cosine_scaled_reward": -0.03765952198300511,
1346
+ "rewards/format_reward": 0.9285714574158191,
1347
+ "rewards/reasoning_steps_reward": 0.96904766112566,
1348
+ "step": 425
1349
+ },
1350
+ {
1351
+ "completion_length": 77.31250357627869,
1352
+ "epoch": 0.6647985312590589,
1353
+ "grad_norm": 0.1370553058236246,
1354
+ "kl": 3.48828125,
1355
+ "learning_rate": 6.079696150841634e-06,
1356
+ "loss": 0.1395,
1357
+ "reward": 1.889148586988449,
1358
+ "reward_std": 0.14615388929378242,
1359
+ "rewards/accuracy_reward": 0.0,
1360
+ "rewards/cosine_scaled_reward": -0.030196763610001655,
1361
+ "rewards/format_reward": 0.9419643133878708,
1362
+ "rewards/reasoning_steps_reward": 0.9773809894919395,
1363
+ "step": 430
1364
+ },
1365
+ {
1366
+ "completion_length": 79.07946805953979,
1367
+ "epoch": 0.6725287467388154,
1368
+ "grad_norm": 0.19615244247307984,
1369
+ "kl": 3.5166015625,
1370
+ "learning_rate": 5.832440091204698e-06,
1371
+ "loss": 0.1406,
1372
+ "reward": 1.8841874316334724,
1373
+ "reward_std": 0.15793084264860227,
1374
+ "rewards/accuracy_reward": 0.0,
1375
+ "rewards/cosine_scaled_reward": -0.03128885845653713,
1376
+ "rewards/format_reward": 0.9419643118977546,
1377
+ "rewards/reasoning_steps_reward": 0.9735119409859181,
1378
+ "step": 435
1379
+ },
1380
+ {
1381
+ "completion_length": 88.07857568264008,
1382
+ "epoch": 0.6802589622185718,
1383
+ "grad_norm": 0.4724963752927991,
1384
+ "kl": 3.5033203125,
1385
+ "learning_rate": 5.588230122660672e-06,
1386
+ "loss": 0.1401,
1387
+ "reward": 1.8664761379361152,
1388
+ "reward_std": 0.164639704185538,
1389
+ "rewards/accuracy_reward": 0.0,
1390
+ "rewards/cosine_scaled_reward": -0.036500148748746145,
1391
+ "rewards/format_reward": 0.932142885029316,
1392
+ "rewards/reasoning_steps_reward": 0.9708333738148213,
1393
+ "step": 440
1394
+ },
1395
+ {
1396
+ "completion_length": 113.22857713699341,
1397
+ "epoch": 0.6879891776983283,
1398
+ "grad_norm": 0.3097996813031107,
1399
+ "kl": 3.45,
1400
+ "learning_rate": 5.347244739538677e-06,
1401
+ "loss": 0.138,
1402
+ "reward": 1.8203087821602821,
1403
+ "reward_std": 0.24133571856264097,
1404
+ "rewards/accuracy_reward": 0.0,
1405
+ "rewards/cosine_scaled_reward": -0.046655593352625147,
1406
+ "rewards/format_reward": 0.9080357499420643,
1407
+ "rewards/reasoning_steps_reward": 0.9589286193251609,
1408
+ "step": 445
1409
+ },
1410
+ {
1411
+ "completion_length": 111.4133985042572,
1412
+ "epoch": 0.6957193931780848,
1413
+ "grad_norm": 0.2012585894133353,
1414
+ "kl": 3.41640625,
1415
+ "learning_rate": 5.109660079301668e-06,
1416
+ "loss": 0.1366,
1417
+ "reward": 1.8180661857128144,
1418
+ "reward_std": 0.23534413103952828,
1419
+ "rewards/accuracy_reward": 0.0,
1420
+ "rewards/cosine_scaled_reward": -0.0471124786825385,
1421
+ "rewards/format_reward": 0.9098214633762837,
1422
+ "rewards/reasoning_steps_reward": 0.9553571894764901,
1423
+ "step": 450
1424
+ },
1425
+ {
1426
+ "completion_length": 77.29286074638367,
1427
+ "epoch": 0.7034496086578413,
1428
+ "grad_norm": 0.17652208862596358,
1429
+ "kl": 3.4974609375,
1430
+ "learning_rate": 4.875649793806655e-06,
1431
+ "loss": 0.1399,
1432
+ "reward": 1.8818938612937928,
1433
+ "reward_std": 0.15572975755203516,
1434
+ "rewards/accuracy_reward": 0.0,
1435
+ "rewards/cosine_scaled_reward": -0.03179671107791364,
1436
+ "rewards/format_reward": 0.9419643104076385,
1437
+ "rewards/reasoning_steps_reward": 0.9717262268066407,
1438
+ "step": 455
1439
+ },
1440
+ {
1441
+ "completion_length": 62.00982408523559,
1442
+ "epoch": 0.7111798241375978,
1443
+ "grad_norm": 0.04887797991180135,
1444
+ "kl": 3.5248046875,
1445
+ "learning_rate": 4.64538492238166e-06,
1446
+ "loss": 0.141,
1447
+ "reward": 1.9128967747092247,
1448
+ "reward_std": 0.11732972208019418,
1449
+ "rewards/accuracy_reward": 0.0,
1450
+ "rewards/cosine_scaled_reward": -0.024603341292822732,
1451
+ "rewards/format_reward": 0.9562500201165676,
1452
+ "rewards/reasoning_steps_reward": 0.9812500312924385,
1453
+ "step": 460
1454
+ },
1455
+ {
1456
+ "completion_length": 62.917859840393064,
1457
+ "epoch": 0.7189100396173543,
1458
+ "grad_norm": 0.08187645718348353,
1459
+ "kl": 3.5171875,
1460
+ "learning_rate": 4.4190337668121964e-06,
1461
+ "loss": 0.1407,
1462
+ "reward": 1.9146563693881036,
1463
+ "reward_std": 0.1148412693213686,
1464
+ "rewards/accuracy_reward": 0.0,
1465
+ "rewards/cosine_scaled_reward": -0.024927071237470955,
1466
+ "rewards/format_reward": 0.9562500201165676,
1467
+ "rewards/reasoning_steps_reward": 0.9833333626389503,
1468
+ "step": 465
1469
+ },
1470
+ {
1471
+ "completion_length": 63.83928849697113,
1472
+ "epoch": 0.7266402550971108,
1473
+ "grad_norm": 0.07879219054017059,
1474
+ "kl": 3.510546875,
1475
+ "learning_rate": 4.196761768328599e-06,
1476
+ "loss": 0.1404,
1477
+ "reward": 1.9097336187958718,
1478
+ "reward_std": 0.114427309948951,
1479
+ "rewards/accuracy_reward": 0.0,
1480
+ "rewards/cosine_scaled_reward": -0.025385533989174293,
1481
+ "rewards/format_reward": 0.9535714477300644,
1482
+ "rewards/reasoning_steps_reward": 0.9815476454794407,
1483
+ "step": 470
1484
+ },
1485
+ {
1486
+ "completion_length": 73.70536048412323,
1487
+ "epoch": 0.7343704705768673,
1488
+ "grad_norm": 0.027892131042639323,
1489
+ "kl": 3.4958984375,
1490
+ "learning_rate": 3.978731386684206e-06,
1491
+ "loss": 0.1398,
1492
+ "reward": 1.8938029453158378,
1493
+ "reward_std": 0.14057790259539615,
1494
+ "rewards/accuracy_reward": 0.0,
1495
+ "rewards/cosine_scaled_reward": -0.030006676557241006,
1496
+ "rewards/format_reward": 0.9446428827941418,
1497
+ "rewards/reasoning_steps_reward": 0.9791667051613331,
1498
+ "step": 475
1499
+ },
1500
+ {
1501
+ "completion_length": 84.47589683532715,
1502
+ "epoch": 0.7421006860566238,
1503
+ "grad_norm": 0.08677532303093845,
1504
+ "kl": 3.4443359375,
1505
+ "learning_rate": 3.7651019814126656e-06,
1506
+ "loss": 0.1378,
1507
+ "reward": 1.8761127531528472,
1508
+ "reward_std": 0.1564179871153101,
1509
+ "rewards/accuracy_reward": 0.0,
1510
+ "rewards/cosine_scaled_reward": -0.03549448415869847,
1511
+ "rewards/format_reward": 0.9357143126428127,
1512
+ "rewards/reasoning_steps_reward": 0.9758928962051868,
1513
+ "step": 480
1514
+ },
1515
+ {
1516
+ "completion_length": 91.65446877479553,
1517
+ "epoch": 0.7498309015363803,
1518
+ "grad_norm": 0.24200171800321144,
1519
+ "kl": 3.43359375,
1520
+ "learning_rate": 3.5560296953512296e-06,
1521
+ "loss": 0.1373,
1522
+ "reward": 1.8591931834816933,
1523
+ "reward_std": 0.16599050024733514,
1524
+ "rewards/accuracy_reward": 0.0,
1525
+ "rewards/cosine_scaled_reward": -0.03842596691683866,
1526
+ "rewards/format_reward": 0.9276785954833031,
1527
+ "rewards/reasoning_steps_reward": 0.9699405111372471,
1528
+ "step": 485
1529
+ },
1530
+ {
1531
+ "completion_length": 85.36607551574707,
1532
+ "epoch": 0.7575611170161368,
1533
+ "grad_norm": 0.056901915490173295,
1534
+ "kl": 3.43671875,
1535
+ "learning_rate": 3.3516673405151546e-06,
1536
+ "loss": 0.1375,
1537
+ "reward": 1.8713713854551315,
1538
+ "reward_std": 0.17605545576270742,
1539
+ "rewards/accuracy_reward": 0.0,
1540
+ "rewards/cosine_scaled_reward": -0.035771561722503974,
1541
+ "rewards/format_reward": 0.9339285984635353,
1542
+ "rewards/reasoning_steps_reward": 0.97321432903409,
1543
+ "step": 490
1544
+ },
1545
+ {
1546
+ "completion_length": 72.79286041259766,
1547
+ "epoch": 0.7652913324958933,
1548
+ "grad_norm": 0.21511832859969,
1549
+ "kl": 3.4658203125,
1550
+ "learning_rate": 3.1521642864065905e-06,
1551
+ "loss": 0.1387,
1552
+ "reward": 1.8944186642765999,
1553
+ "reward_std": 0.12519371660437173,
1554
+ "rewards/accuracy_reward": 0.0,
1555
+ "rewards/cosine_scaled_reward": -0.029688578064087777,
1556
+ "rewards/format_reward": 0.9464285932481289,
1557
+ "rewards/reasoning_steps_reward": 0.9776786051690578,
1558
+ "step": 495
1559
+ },
1560
+ {
1561
+ "completion_length": 72.79107475280762,
1562
+ "epoch": 0.7730215479756498,
1563
+ "grad_norm": 0.04223723247860192,
1564
+ "kl": 3.4537109375,
1565
+ "learning_rate": 2.957666350839663e-06,
1566
+ "loss": 0.1381,
1567
+ "reward": 1.8936428263783456,
1568
+ "reward_std": 0.13871936192344947,
1569
+ "rewards/accuracy_reward": 0.0,
1570
+ "rewards/cosine_scaled_reward": -0.029869176616193725,
1571
+ "rewards/format_reward": 0.9464285969734192,
1572
+ "rewards/reasoning_steps_reward": 0.9770833663642406,
1573
+ "step": 500
1574
+ },
1575
+ {
1576
+ "epoch": 0.7730215479756498,
1577
+ "eval_completion_length": 98.31190967559814,
1578
+ "eval_kl": 3.498046875,
1579
+ "eval_loss": 0.13821543753147125,
1580
+ "eval_reward": 1.8459261506795883,
1581
+ "eval_reward_std": 0.1891471924027428,
1582
+ "eval_rewards/accuracy_reward": 0.0,
1583
+ "eval_rewards/cosine_scaled_reward": -0.03949062270112336,
1584
+ "eval_rewards/format_reward": 0.9241071790456772,
1585
+ "eval_rewards/reasoning_steps_reward": 0.961309552192688,
1586
+ "eval_runtime": 45.7093,
1587
+ "eval_samples_per_second": 2.166,
1588
+ "eval_steps_per_second": 0.088,
1589
+ "step": 500
1590
+ },
1591
+ {
1592
+ "completion_length": 66.50357437133789,
1593
+ "epoch": 0.7807517634554063,
1594
+ "grad_norm": 0.0248301767642567,
1595
+ "kl": 3.4912109375,
1596
+ "learning_rate": 2.768315693361474e-06,
1597
+ "loss": 0.1397,
1598
+ "reward": 1.9070332109928132,
1599
+ "reward_std": 0.11746567972004414,
1600
+ "rewards/accuracy_reward": 0.0,
1601
+ "rewards/cosine_scaled_reward": -0.026597837242297827,
1602
+ "rewards/format_reward": 0.9526785925030709,
1603
+ "rewards/reasoning_steps_reward": 0.9809524178504944,
1604
+ "step": 505
1605
+ },
1606
+ {
1607
+ "completion_length": 72.8000033378601,
1608
+ "epoch": 0.7884819789351628,
1609
+ "grad_norm": 0.06143871493916858,
1610
+ "kl": 3.4701171875,
1611
+ "learning_rate": 2.5842507113469307e-06,
1612
+ "loss": 0.1388,
1613
+ "reward": 1.8958711713552474,
1614
+ "reward_std": 0.1414075436458006,
1615
+ "rewards/accuracy_reward": 0.0,
1616
+ "rewards/cosine_scaled_reward": -0.030021787446457893,
1617
+ "rewards/format_reward": 0.9464285939931869,
1618
+ "rewards/reasoning_steps_reward": 0.9794643186032772,
1619
+ "step": 510
1620
+ },
1621
+ {
1622
+ "completion_length": 75.4857177734375,
1623
+ "epoch": 0.7962121944149193,
1624
+ "grad_norm": 0.028586002230415825,
1625
+ "kl": 3.4546875,
1626
+ "learning_rate": 2.405605938843416e-06,
1627
+ "loss": 0.1382,
1628
+ "reward": 1.8888832941651343,
1629
+ "reward_std": 0.1412749015726149,
1630
+ "rewards/accuracy_reward": 0.0,
1631
+ "rewards/cosine_scaled_reward": -0.03135490003041923,
1632
+ "rewards/format_reward": 0.9446428820490838,
1633
+ "rewards/reasoning_steps_reward": 0.9755952760577202,
1634
+ "step": 515
1635
+ },
1636
+ {
1637
+ "completion_length": 95.24732608795166,
1638
+ "epoch": 0.8039424098946758,
1639
+ "grad_norm": 0.08861098505851854,
1640
+ "kl": 3.4146484375,
1641
+ "learning_rate": 2.2325119482391466e-06,
1642
+ "loss": 0.1366,
1643
+ "reward": 1.852172775566578,
1644
+ "reward_std": 0.18426264682784677,
1645
+ "rewards/accuracy_reward": 0.0,
1646
+ "rewards/cosine_scaled_reward": -0.040684470417909326,
1647
+ "rewards/format_reward": 0.9241071723401546,
1648
+ "rewards/reasoning_steps_reward": 0.9687500439584256,
1649
+ "step": 520
1650
+ },
1651
+ {
1652
+ "completion_length": 81.48393249511719,
1653
+ "epoch": 0.8116726253744323,
1654
+ "grad_norm": 710.8421619250436,
1655
+ "kl": 11.9974609375,
1656
+ "learning_rate": 2.065095254827133e-06,
1657
+ "loss": 0.4807,
1658
+ "reward": 1.8779245063662529,
1659
+ "reward_std": 0.15769884596811606,
1660
+ "rewards/accuracy_reward": 0.0,
1661
+ "rewards/cosine_scaled_reward": -0.033980353159131484,
1662
+ "rewards/format_reward": 0.9375000268220901,
1663
+ "rewards/reasoning_steps_reward": 0.9744048058986664,
1664
+ "step": 525
1665
+ },
1666
+ {
1667
+ "completion_length": 64.70714569091797,
1668
+ "epoch": 0.8194028408541888,
1669
+ "grad_norm": 0.04884046335826561,
1670
+ "kl": 3.493359375,
1671
+ "learning_rate": 1.9034782243345074e-06,
1672
+ "loss": 0.1397,
1673
+ "reward": 1.9050584733486176,
1674
+ "reward_std": 0.11774966189013866,
1675
+ "rewards/accuracy_reward": 0.0,
1676
+ "rewards/cosine_scaled_reward": -0.02619163042982109,
1677
+ "rewards/format_reward": 0.9535714477300644,
1678
+ "rewards/reasoning_steps_reward": 0.9776785969734192,
1679
+ "step": 530
1680
+ },
1681
+ {
1682
+ "completion_length": 66.50357437133789,
1683
+ "epoch": 0.8271330563339453,
1684
+ "grad_norm": 0.06425799238919987,
1685
+ "kl": 3.5025390625,
1686
+ "learning_rate": 1.7477789834847835e-06,
1687
+ "loss": 0.1401,
1688
+ "reward": 1.9041022166609765,
1689
+ "reward_std": 0.12976709343101903,
1690
+ "rewards/accuracy_reward": 0.0,
1691
+ "rewards/cosine_scaled_reward": -0.026850270089926197,
1692
+ "rewards/format_reward": 0.9526785917580127,
1693
+ "rewards/reasoning_steps_reward": 0.9782738409936428,
1694
+ "step": 535
1695
+ },
1696
+ {
1697
+ "completion_length": 69.19821739196777,
1698
+ "epoch": 0.8348632718137018,
1699
+ "grad_norm": 0.0533265407861989,
1700
+ "kl": 3.4892578125,
1701
+ "learning_rate": 1.5981113336584041e-06,
1702
+ "loss": 0.1395,
1703
+ "reward": 1.9006277784705161,
1704
+ "reward_std": 0.125570208276622,
1705
+ "rewards/accuracy_reward": 0.0,
1706
+ "rewards/cosine_scaled_reward": -0.027943752938881516,
1707
+ "rewards/format_reward": 0.949107164144516,
1708
+ "rewards/reasoning_steps_reward": 0.9794643156230449,
1709
+ "step": 540
1710
+ },
1711
+ {
1712
+ "completion_length": 67.40625302791595,
1713
+ "epoch": 0.8425934872934583,
1714
+ "grad_norm": 0.06527419814300027,
1715
+ "kl": 3.5046875,
1716
+ "learning_rate": 1.4545846677147446e-06,
1717
+ "loss": 0.1402,
1718
+ "reward": 1.9023914471268655,
1719
+ "reward_std": 0.13218648402971667,
1720
+ "rewards/accuracy_reward": 0.0,
1721
+ "rewards/cosine_scaled_reward": -0.027370562584837898,
1722
+ "rewards/format_reward": 0.9508928805589676,
1723
+ "rewards/reasoning_steps_reward": 0.9788690812885761,
1724
+ "step": 545
1725
+ },
1726
+ {
1727
+ "completion_length": 70.99911036491395,
1728
+ "epoch": 0.8503237027732148,
1729
+ "grad_norm": 0.14692504997903305,
1730
+ "kl": 3.49453125,
1731
+ "learning_rate": 1.3173038900362977e-06,
1732
+ "loss": 0.1398,
1733
+ "reward": 1.8956558883190155,
1734
+ "reward_std": 0.12889199228147846,
1735
+ "rewards/accuracy_reward": 0.0,
1736
+ "rewards/cosine_scaled_reward": -0.02904659230262041,
1737
+ "rewards/format_reward": 0.9473214522004128,
1738
+ "rewards/reasoning_steps_reward": 0.977380982786417,
1739
+ "step": 550
1740
+ },
1741
+ {
1742
+ "completion_length": 67.55535998344422,
1743
+ "epoch": 0.8580539182529713,
1744
+ "grad_norm": 0.1394448990351517,
1745
+ "kl": 3.48125,
1746
+ "learning_rate": 1.1863693398535115e-06,
1747
+ "loss": 0.1392,
1748
+ "reward": 1.9022439941763878,
1749
+ "reward_std": 0.13239500699564816,
1750
+ "rewards/accuracy_reward": 0.0,
1751
+ "rewards/cosine_scaled_reward": -0.02811324886861257,
1752
+ "rewards/format_reward": 0.9517857365310192,
1753
+ "rewards/reasoning_steps_reward": 0.9785714581608772,
1754
+ "step": 555
1755
+ },
1756
+ {
1757
+ "completion_length": 62.0455384016037,
1758
+ "epoch": 0.8657841337327278,
1759
+ "grad_norm": 0.10614107580517884,
1760
+ "kl": 3.5326171875,
1761
+ "learning_rate": 1.0618767179063416e-06,
1762
+ "loss": 0.1413,
1763
+ "reward": 1.9079707980155944,
1764
+ "reward_std": 0.12429608543943686,
1765
+ "rewards/accuracy_reward": 0.0,
1766
+ "rewards/cosine_scaled_reward": -0.02476739838020876,
1767
+ "rewards/format_reward": 0.9553571626543998,
1768
+ "rewards/reasoning_steps_reward": 0.9773809798061848,
1769
+ "step": 560
1770
+ },
1771
+ {
1772
+ "completion_length": 65.60714576244354,
1773
+ "epoch": 0.8735143492124843,
1774
+ "grad_norm": 0.08347131383243112,
1775
+ "kl": 3.4798828125,
1776
+ "learning_rate": 9.439170164960765e-07,
1777
+ "loss": 0.1392,
1778
+ "reward": 1.907164917886257,
1779
+ "reward_std": 0.12543576840839704,
1780
+ "rewards/accuracy_reward": 0.0,
1781
+ "rewards/cosine_scaled_reward": -0.026763751916587353,
1782
+ "rewards/format_reward": 0.9535714492201806,
1783
+ "rewards/reasoning_steps_reward": 0.9803571715950966,
1784
+ "step": 565
1785
+ },
1786
+ {
1787
+ "completion_length": 68.30803880691528,
1788
+ "epoch": 0.8812445646922408,
1789
+ "grad_norm": 0.27661869101085307,
1790
+ "kl": 3.4837890625,
1791
+ "learning_rate": 8.325764529785851e-07,
1792
+ "loss": 0.1394,
1793
+ "reward": 1.8964042320847512,
1794
+ "reward_std": 0.13058434696868063,
1795
+ "rewards/accuracy_reward": 0.0,
1796
+ "rewards/cosine_scaled_reward": -0.028000628220615907,
1797
+ "rewards/format_reward": 0.9500000230967999,
1798
+ "rewards/reasoning_steps_reward": 0.9744047962129117,
1799
+ "step": 570
1800
+ },
1801
+ {
1802
+ "completion_length": 88.06964702606201,
1803
+ "epoch": 0.8889747801719973,
1804
+ "grad_norm": 0.1964548865756102,
1805
+ "kl": 3.4263671875,
1806
+ "learning_rate": 7.279364067476247e-07,
1807
+ "loss": 0.137,
1808
+ "reward": 1.861181303858757,
1809
+ "reward_std": 0.18066303946543485,
1810
+ "rewards/accuracy_reward": 0.0,
1811
+ "rewards/cosine_scaled_reward": -0.03733069502632134,
1812
+ "rewards/format_reward": 0.9312500290572643,
1813
+ "rewards/reasoning_steps_reward": 0.9672619484364986,
1814
+ "step": 575
1815
+ },
1816
+ {
1817
+ "completion_length": 78.18661077022553,
1818
+ "epoch": 0.8967049956517538,
1819
+ "grad_norm": 0.04068328201949373,
1820
+ "kl": 3.4509765625,
1821
+ "learning_rate": 6.300733597542086e-07,
1822
+ "loss": 0.138,
1823
+ "reward": 1.8831033661961556,
1824
+ "reward_std": 0.15025150256306005,
1825
+ "rewards/accuracy_reward": 0.0,
1826
+ "rewards/cosine_scaled_reward": -0.03237292571575381,
1827
+ "rewards/format_reward": 0.9410714529454708,
1828
+ "rewards/reasoning_steps_reward": 0.9744047962129117,
1829
+ "step": 580
1830
+ },
1831
+ {
1832
+ "completion_length": 70.1169674873352,
1833
+ "epoch": 0.9044352111315103,
1834
+ "grad_norm": 0.2203913242004148,
1835
+ "kl": 3.4599609375,
1836
+ "learning_rate": 5.390588406055497e-07,
1837
+ "loss": 0.1384,
1838
+ "reward": 1.895041187107563,
1839
+ "reward_std": 0.1379903966987513,
1840
+ "rewards/accuracy_reward": 0.0,
1841
+ "rewards/cosine_scaled_reward": -0.029066056082956492,
1842
+ "rewards/format_reward": 0.949107164144516,
1843
+ "rewards/reasoning_steps_reward": 0.9750000342726708,
1844
+ "step": 585
1845
+ },
1846
+ {
1847
+ "completion_length": 77.28482503890991,
1848
+ "epoch": 0.9121654266112668,
1849
+ "grad_norm": 0.16584654551452574,
1850
+ "kl": 3.4349609375,
1851
+ "learning_rate": 4.549593722844492e-07,
1852
+ "loss": 0.1374,
1853
+ "reward": 1.8838764503598213,
1854
+ "reward_std": 0.15387297290526475,
1855
+ "rewards/accuracy_reward": 0.0,
1856
+ "rewards/cosine_scaled_reward": -0.032195083069382235,
1857
+ "rewards/format_reward": 0.9410714536905289,
1858
+ "rewards/reasoning_steps_reward": 0.9750000394880771,
1859
+ "step": 590
1860
+ },
1861
+ {
1862
+ "completion_length": 74.61607468128204,
1863
+ "epoch": 0.9198956420910233,
1864
+ "grad_norm": 0.19216245987467911,
1865
+ "kl": 3.475390625,
1866
+ "learning_rate": 3.77836423527278e-07,
1867
+ "loss": 0.139,
1868
+ "reward": 1.8887845054268837,
1869
+ "reward_std": 0.14236255070909465,
1870
+ "rewards/accuracy_reward": 0.0,
1871
+ "rewards/cosine_scaled_reward": -0.03085845318273641,
1872
+ "rewards/format_reward": 0.9437500238418579,
1873
+ "rewards/reasoning_steps_reward": 0.975892896950245,
1874
+ "step": 595
1875
+ },
1876
+ {
1877
+ "completion_length": 76.38393211364746,
1878
+ "epoch": 0.9276258575707798,
1879
+ "grad_norm": 0.060252180136433846,
1880
+ "kl": 3.4697265625,
1881
+ "learning_rate": 3.0774636389618196e-07,
1882
+ "loss": 0.1388,
1883
+ "reward": 1.884899152815342,
1884
+ "reward_std": 0.147100730240345,
1885
+ "rewards/accuracy_reward": 0.0,
1886
+ "rewards/cosine_scaled_reward": -0.03147000586614013,
1887
+ "rewards/format_reward": 0.9419643118977546,
1888
+ "rewards/reasoning_steps_reward": 0.9744047917425632,
1889
+ "step": 600
1890
+ },
1891
+ {
1892
+ "epoch": 0.9276258575707798,
1893
+ "eval_completion_length": 89.25833797454834,
1894
+ "eval_kl": 3.470703125,
1895
+ "eval_loss": 0.13820315897464752,
1896
+ "eval_reward": 1.8693622648715973,
1897
+ "eval_reward_std": 0.15594222582876682,
1898
+ "eval_rewards/accuracy_reward": 0.0,
1899
+ "eval_rewards/cosine_scaled_reward": -0.03539974894374609,
1900
+ "eval_rewards/format_reward": 0.933035746216774,
1901
+ "eval_rewards/reasoning_steps_reward": 0.9717262163758278,
1902
+ "eval_runtime": 33.1947,
1903
+ "eval_samples_per_second": 2.982,
1904
+ "eval_steps_per_second": 0.121,
1905
+ "step": 600
1906
+ },
1907
+ {
1908
+ "completion_length": 80.05089657306671,
1909
+ "epoch": 0.9353560730505363,
1910
+ "grad_norm": 0.057380352644946994,
1911
+ "kl": 3.4642578125,
1912
+ "learning_rate": 2.44740422578269e-07,
1913
+ "loss": 0.1386,
1914
+ "reward": 1.876345480978489,
1915
+ "reward_std": 0.15905879642814397,
1916
+ "rewards/accuracy_reward": 0.0,
1917
+ "rewards/cosine_scaled_reward": -0.03347604034934193,
1918
+ "rewards/format_reward": 0.9375000275671482,
1919
+ "rewards/reasoning_steps_reward": 0.9723214760422707,
1920
+ "step": 605
1921
+ },
1922
+ {
1923
+ "completion_length": 85.38750400543213,
1924
+ "epoch": 0.9430862885302927,
1925
+ "grad_norm": 0.12308221099914948,
1926
+ "kl": 3.4466796875,
1927
+ "learning_rate": 1.8886465094192895e-07,
1928
+ "loss": 0.1378,
1929
+ "reward": 1.8649245023727417,
1930
+ "reward_std": 0.17699857261031865,
1931
+ "rewards/accuracy_reward": 0.0,
1932
+ "rewards/cosine_scaled_reward": -0.03596844737767242,
1933
+ "rewards/format_reward": 0.9330357424914837,
1934
+ "rewards/reasoning_steps_reward": 0.9678571827709674,
1935
+ "step": 610
1936
+ },
1937
+ {
1938
+ "completion_length": 75.48661060333252,
1939
+ "epoch": 0.9508165040100492,
1940
+ "grad_norm": 0.08698913640999234,
1941
+ "kl": 3.4462890625,
1942
+ "learning_rate": 1.401598888776523e-07,
1943
+ "loss": 0.1378,
1944
+ "reward": 1.8878486067056657,
1945
+ "reward_std": 0.14815408168360591,
1946
+ "rewards/accuracy_reward": 0.0,
1947
+ "rewards/cosine_scaled_reward": -0.031496733688982204,
1948
+ "rewards/format_reward": 0.946428595483303,
1949
+ "rewards/reasoning_steps_reward": 0.9729166962206364,
1950
+ "step": 615
1951
+ },
1952
+ {
1953
+ "completion_length": 80.87678947448731,
1954
+ "epoch": 0.9585467194898057,
1955
+ "grad_norm": 0.0751696581199154,
1956
+ "kl": 3.4388671875,
1957
+ "learning_rate": 9.866173494794462e-08,
1958
+ "loss": 0.1375,
1959
+ "reward": 1.8755054756999017,
1960
+ "reward_std": 0.14723004253473845,
1961
+ "rewards/accuracy_reward": 0.0,
1962
+ "rewards/cosine_scaled_reward": -0.034018434659810734,
1963
+ "rewards/format_reward": 0.9383928820490837,
1964
+ "rewards/reasoning_steps_reward": 0.9711309857666492,
1965
+ "step": 620
1966
+ },
1967
+ {
1968
+ "completion_length": 83.59286117553711,
1969
+ "epoch": 0.9662769349695622,
1970
+ "grad_norm": 0.10937622032847172,
1971
+ "kl": 3.457421875,
1972
+ "learning_rate": 6.440052036815081e-08,
1973
+ "loss": 0.1383,
1974
+ "reward": 1.8713971391320228,
1975
+ "reward_std": 0.16230505469911805,
1976
+ "rewards/accuracy_reward": 0.0,
1977
+ "rewards/cosine_scaled_reward": -0.03515056184260175,
1978
+ "rewards/format_reward": 0.9357143118977547,
1979
+ "rewards/reasoning_steps_reward": 0.970833370089531,
1980
+ "step": 625
1981
+ },
1982
+ {
1983
+ "completion_length": 83.54196829795838,
1984
+ "epoch": 0.9740071504493187,
1985
+ "grad_norm": 0.11908490334435194,
1986
+ "kl": 3.4828125,
1987
+ "learning_rate": 3.7401286837214224e-08,
1988
+ "loss": 0.1393,
1989
+ "reward": 1.8702244937419892,
1990
+ "reward_std": 0.15762649106984555,
1991
+ "rewards/accuracy_reward": 0.0,
1992
+ "rewards/cosine_scaled_reward": -0.03513275724835694,
1993
+ "rewards/format_reward": 0.9357143118977547,
1994
+ "rewards/reasoning_steps_reward": 0.9696428954601288,
1995
+ "step": 630
1996
+ },
1997
+ {
1998
+ "completion_length": 78.18839647769929,
1999
+ "epoch": 0.9817373659290752,
2000
+ "grad_norm": 0.11683355049170727,
2001
+ "kl": 3.4583984375,
2002
+ "learning_rate": 1.7683768234568745e-08,
2003
+ "loss": 0.1383,
2004
+ "reward": 1.8763473451137542,
2005
+ "reward_std": 0.15354155295281088,
2006
+ "rewards/accuracy_reward": 0.0,
2007
+ "rewards/cosine_scaled_reward": -0.03258133551571518,
2008
+ "rewards/format_reward": 0.9401785962283611,
2009
+ "rewards/reasoning_steps_reward": 0.9687500402331353,
2010
+ "step": 635
2011
+ },
2012
+ {
2013
+ "completion_length": 81.77321815490723,
2014
+ "epoch": 0.9894675814088317,
2015
+ "grad_norm": 0.5345026896039206,
2016
+ "kl": 3.4708984375,
2017
+ "learning_rate": 5.262376196544239e-09,
2018
+ "loss": 0.1388,
2019
+ "reward": 1.8747070506215096,
2020
+ "reward_std": 0.1622747814282775,
2021
+ "rewards/accuracy_reward": 0.0,
2022
+ "rewards/cosine_scaled_reward": -0.03362638182006776,
2023
+ "rewards/format_reward": 0.9366071708500385,
2024
+ "rewards/reasoning_steps_reward": 0.9717262290418148,
2025
+ "step": 640
2026
+ },
2027
+ {
2028
+ "completion_length": 84.52768263816833,
2029
+ "epoch": 0.9971977968885882,
2030
+ "grad_norm": 0.13671175640957767,
2031
+ "kl": 3.4451171875,
2032
+ "learning_rate": 1.461895828280824e-10,
2033
+ "loss": 0.1378,
2034
+ "reward": 1.8673253536224366,
2035
+ "reward_std": 0.16173910862949015,
2036
+ "rewards/accuracy_reward": 0.0,
2037
+ "rewards/cosine_scaled_reward": -0.03565093849319965,
2038
+ "rewards/format_reward": 0.934821455180645,
2039
+ "rewards/reasoning_steps_reward": 0.9681547932326794,
2040
+ "step": 645
2041
+ },
2042
+ {
2043
+ "completion_length": 71.89286041259766,
2044
+ "epoch": 0.9987438399845395,
2045
+ "kl": 3.4921875,
2046
+ "reward": 1.8919485434889793,
2047
+ "reward_std": 0.14695495925843716,
2048
+ "rewards/accuracy_reward": 0.0,
2049
+ "rewards/cosine_scaled_reward": -0.02918250160291791,
2050
+ "rewards/format_reward": 0.9464285969734192,
2051
+ "rewards/reasoning_steps_reward": 0.9747024178504944,
2052
+ "step": 646,
2053
+ "total_flos": 0.0,
2054
+ "train_loss": 0.3506326697535499,
2055
+ "train_runtime": 41982.506,
2056
+ "train_samples_per_second": 1.726,
2057
+ "train_steps_per_second": 0.015
2058
+ }
2059
+ ],
2060
+ "logging_steps": 5,
2061
+ "max_steps": 646,
2062
+ "num_input_tokens_seen": 0,
2063
+ "num_train_epochs": 1,
2064
+ "save_steps": 500,
2065
+ "stateful_callbacks": {
2066
+ "TrainerControl": {
2067
+ "args": {
2068
+ "should_epoch_stop": false,
2069
+ "should_evaluate": false,
2070
+ "should_log": false,
2071
+ "should_save": false,
2072
+ "should_training_stop": false
2073
+ },
2074
+ "attributes": {}
2075
+ }
2076
+ },
2077
+ "total_flos": 0.0,
2078
+ "train_batch_size": 2,
2079
+ "trial_name": null,
2080
+ "trial_params": null
2081
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b94c655a8fafa729f0608210f9fbfa68c66c03da60c773a7ba53c622752f9af
3
+ size 7544
vocab.json ADDED
The diff for this file is too large to render. See raw diff