Upload train.py with huggingface_hub
Browse files
train.py
CHANGED
@@ -11,7 +11,6 @@
|
|
11 |
# "trl",
|
12 |
# "peft",
|
13 |
# "wandb",
|
14 |
-
# "bitsandbytes",
|
15 |
# "torchvision",
|
16 |
# "torchaudio",
|
17 |
# ]
|
@@ -22,7 +21,7 @@
|
|
22 |
|
23 |
import torch
|
24 |
from datasets import load_dataset
|
25 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
26 |
from trl import SFTConfig, SFTTrainer, setup_chat_format
|
27 |
from peft import LoraConfig
|
28 |
|
@@ -70,20 +69,12 @@ learning_rate = 2e-4
|
|
70 |
|
71 |
"""## Load model and tokenizer"""
|
72 |
|
73 |
-
# specify how to quantize the model
|
74 |
-
# quantization_config = BitsAndBytesConfig(
|
75 |
-
# load_in_4bit=True,
|
76 |
-
# bnb_4bit_quant_type="nf4",
|
77 |
-
# bnb_4bit_use_double_quant=True,
|
78 |
-
# )
|
79 |
-
|
80 |
# Load model
|
81 |
model = AutoModelForCausalLM.from_pretrained(
|
82 |
model_name,
|
83 |
torch_dtype=torch.bfloat16,
|
84 |
use_cache=False, # Disable KV cache during training
|
85 |
device_map="auto",
|
86 |
-
# quantization_config=quantization_config
|
87 |
)
|
88 |
|
89 |
# Load tokenizer
|
|
|
11 |
# "trl",
|
12 |
# "peft",
|
13 |
# "wandb",
|
|
|
14 |
# "torchvision",
|
15 |
# "torchaudio",
|
16 |
# ]
|
|
|
21 |
|
22 |
import torch
|
23 |
from datasets import load_dataset
|
24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
25 |
from trl import SFTConfig, SFTTrainer, setup_chat_format
|
26 |
from peft import LoraConfig
|
27 |
|
|
|
69 |
|
70 |
"""## Load model and tokenizer"""
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
# Load model
|
73 |
model = AutoModelForCausalLM.from_pretrained(
|
74 |
model_name,
|
75 |
torch_dtype=torch.bfloat16,
|
76 |
use_cache=False, # Disable KV cache during training
|
77 |
device_map="auto",
|
|
|
78 |
)
|
79 |
|
80 |
# Load tokenizer
|