File size: 1,914 Bytes
e875ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: apache-2.0
base_model: facebook/bart-large
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large_readme_summarization
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large_readme_summarization

This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8286
- Rouge1: 0.5485
- Rouge2: 0.4096
- Rougel: 0.5242
- Rougelsum: 0.524
- Gen Len: 15.1271

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.1578        | 1.0   | 2916  | 1.9917          | 0.489  | 0.3382 | 0.4619 | 0.4618    | 15.9544 |
| 1.5841        | 2.0   | 5832  | 1.8486          | 0.5197 | 0.3778 | 0.4948 | 0.4942    | 15.0384 |
| 1.2896        | 3.0   | 8748  | 1.8169          | 0.5445 | 0.3982 | 0.5188 | 0.5192    | 13.994  |
| 1.0315        | 4.0   | 11664 | 1.8286          | 0.5485 | 0.4096 | 0.5242 | 0.524     | 15.1271 |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1