--- license: apache-2.0 library_name: pytorch pipeline_tag: image-to-image datasets: - ylecun/mnist language: - en --- # DenseUNet An image-to-image model for upscaling blurry MNIST-like images. ## Table of contents - [Model Summary](#model-summary) - [Use Cases & Limitations](#use-cases--limitations) - [How to Use](#how-to-use) - [Model Details](#model-details) - [Training Procedure](#training-procedure) - [Evaluation](#evaluation) - [Ethical Considerations & Limitations](#ethical-considerations--limitations) - [Caveats and Recommendations](#caveats-and-recommendations) - [Citation](#citation) - [License](#license) - [Contact](#contact) --- ## Model Summary - **Task:** Image to image (upscaling) - **Architecture:** UNet with Dense layers - **Inputs:** MNIST image - **Outputs:** Upscaled images of numbers - **Intended Users:** Students learning image-to-image tasks ## Use Cases & Limitations ### Intended uses - learning image-to-image model behavior ### Out-of-scope uses / limitations - Not for production or deployment ## How to Use ```python # ToDo ``` ## Model Details - **Developers:** Blaise Gauvin St-Denis (bstdenis) - **Organization:** Ouranos - **Version:** v1.0 (2025-08-13) - **Dataset:** `mnist` (trainsplit) - **Evaluation dataset:** `mnist` (test split) - **Compute:** 1x L40 (ToDo training time) - **Framework:** Dense UNet / PyTorch 2.8 - **Hardware/Software dependencies:** CUDA 12.8, Python 3.12 ## Training Procedure ### Data preprocessing - Resize to 32 x 32 with all possible locations for the 28 x 28 original data - Downcale 4x (to 8 x 8) ### Hyperparameters - Epochs: - Batch size: - Learnings rate: - Weight decay: - Seed: 0 ## Evaluation ## Ethical Considerations & Limitations - For educational purpose only ## Caveats and Recommendations ## Citation If you use this model, please cite ToDo ## License This model is released under the Apache 2.0 License. See `LICENSE` file. ## Contact - **Maintainer:** @bstdenis