weight = 'model_best.pth' resume = False evaluate = True test_only = False seed = 28024989 save_path = 'exp/nuscenes/train_highbay_07' num_worker = 32 batch_size = 4 batch_size_val = None batch_size_test = None epoch = 50 eval_epoch = 50 sync_bn = False enable_amp = True empty_cache = False find_unused_parameters = False mix_prob = 0.8 param_dicts = [dict(keyword='block', lr=0.004)] hooks = [ dict( type='CheckpointLoader', keywords='module.seg_head.', replacement='module.seg_head_duplicate.'), dict(type='IterationTimer', warmup_iter=2), dict(type='InformationWriter'), dict(type='SemSegEvaluator'), dict(type='CheckpointSaver', save_freq=None), dict(type='PreciseEvaluator', test_last=False) ] train = dict(type='DefaultTrainer') test = dict(type='SemSegTester', verbose=True) model = dict( type='DefaultSegmentorV2', num_classes=2, backbone_out_channels=64, backbone=dict( type='PT-v3m1', in_channels=4, order=['z', 'z-trans', 'hilbert', 'hilbert-trans'], stride=(2, 2, 2, 2), enc_depths=(2, 2, 2, 6, 2), enc_channels=(32, 64, 128, 256, 512), enc_num_head=(2, 4, 8, 16, 32), enc_patch_size=(64, 64, 64, 64, 64), dec_depths=(2, 2, 2, 2), dec_channels=(64, 64, 128, 256), dec_num_head=(4, 4, 8, 16), dec_patch_size=(64, 64, 64, 64), mlp_ratio=4, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, drop_path=0.3, shuffle_orders=True, pre_norm=True, enable_rpe=True, enable_flash=False, upcast_attention=True, upcast_softmax=True, cls_mode=False, pdnorm_bn=False, pdnorm_ln=False, pdnorm_decouple=True, pdnorm_adaptive=False, pdnorm_affine=True, pdnorm_conditions=('nuScenes', 'SemanticKITTI', 'Waymo')), criteria=[ dict(type='CrossEntropyLoss', loss_weight=1.0, ignore_index=-1), dict( type='LovaszLoss', mode='multiclass', loss_weight=1.0, ignore_index=-1) ]) optimizer = dict(type='AdamW', lr=0.004, weight_decay=0.005) scheduler = dict( type='OneCycleLR', max_lr=[0.004, 0.0002], pct_start=0.04, anneal_strategy='cos', div_factor=10.0, final_div_factor=100.0) data_root = '' ignore_index = -1 names = ['background', 'lane'] data = dict( num_classes=2, ignore_index=-1, names=['background', 'lane'], train=dict( type='SemanticKITTIDataset', split='train', data_root='', transform=[ dict( type='RandomRotate', angle=[-1, 1], axis='z', center=[0, 0, 0], p=0.5), dict(type='RandomScale', scale=[0.9, 1.1]), dict(type='RandomFlip', p=0.5), dict(type='RandomJitter', sigma=0.005, clip=0.02), dict( type='GridSample', grid_size=0.05, hash_type='fnv', mode='train', keys=('coord', 'strength', 'segment'), return_grid_coord=True), dict(type='ToTensor'), dict( type='Collect', keys=('coord', 'grid_coord', 'segment'), feat_keys=('coord', 'strength')) ], test_mode=False, ignore_index=-1, loop=1), val=dict( type='SemanticKITTIDataset', split='val', data_root='', transform=[ dict( type='GridSample', grid_size=0.05, hash_type='fnv', mode='train', keys=('coord', 'strength', 'segment'), return_grid_coord=True), dict(type='ToTensor'), dict( type='Collect', keys=('coord', 'grid_coord', 'segment'), feat_keys=('coord', 'strength')) ], test_mode=False, ignore_index=-1), test=dict( type='SemanticKITTIDataset', split='test', data_root='', transform=[ dict(type='Copy', keys_dict=dict(segment='origin_segment')), dict( type='GridSample', grid_size=0.05, hash_type='fnv', mode='train', keys=('coord', 'strength', 'segment'), return_inverse=True) ], test_mode=True, test_cfg=dict( voxelize=dict( type='GridSample', grid_size=0.05, hash_type='fnv', mode='test', return_grid_coord=True, keys=('coord', 'strength')), crop=None, post_transform=[ dict(type='ToTensor'), dict( type='Collect', keys=('coord', 'grid_coord', 'index'), feat_keys=('coord', 'strength')) ], aug_transform=[[{ 'type': 'RandomRotateTargetAngle', 'angle': [0], 'axis': 'z', 'center': [0, 0, 0], 'p': 1 }]]), ignore_index=-1))