Diffusers
TalHach61 commited on
Commit
dd99fd9
·
verified ·
1 Parent(s): f173bed

Delete pipeline_flux_controlnet.py

Browse files
Files changed (1) hide show
  1. pipeline_flux_controlnet.py +0 -532
pipeline_flux_controlnet.py DELETED
@@ -1,532 +0,0 @@
1
- # Copyright 2024 Stability AI and The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- from typing import Any, Callable, Dict, List, Optional, Union
16
- import torch
17
- from transformers import (
18
- T5EncoderModel,
19
- T5TokenizerFast,
20
- )
21
- from diffusers.image_processor import PipelineImageInput
22
-
23
- from diffusers import AutoencoderKL # Waiting for diffusers udpdate
24
- from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
25
- from diffusers.schedulers import KarrasDiffusionSchedulers
26
- from diffusers.utils import logging
27
- from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
28
- from diffusers.pipelines.flux.pipeline_flux import retrieve_timesteps
29
- from .controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
30
-
31
- from .pipeline_bria import BriaPipeline
32
- from transformer_bria import BriaTransformer2DModel
33
- from bria_utils import get_original_sigmas
34
-
35
- XLA_AVAILABLE = False
36
-
37
-
38
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
39
-
40
-
41
- class FluxControlNetPipeline(BriaPipeline):
42
- r"""
43
- Args:
44
- transformer ([`SD3Transformer2DModel`]):
45
- Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
46
- scheduler ([`FlowMatchEulerDiscreteScheduler`]):
47
- A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
48
- vae ([`AutoencoderKL`]):
49
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
50
- text_encoder ([`T5EncoderModel`]):
51
- Frozen text-encoder. Stable Diffusion 3 uses
52
- [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
53
- [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
54
- tokenizer (`T5TokenizerFast`):
55
- Tokenizer of class
56
- [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
57
- """
58
-
59
- model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder->transformer->vae"
60
- _optional_components = []
61
- _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"]
62
-
63
- def __init__( # EYAL - removed clip text encoder + tokenizer
64
- self,
65
- transformer: BriaTransformer2DModel,
66
- scheduler: Union[FlowMatchEulerDiscreteScheduler, KarrasDiffusionSchedulers],
67
- vae: AutoencoderKL,
68
- text_encoder: T5EncoderModel,
69
- tokenizer: T5TokenizerFast,
70
- controlnet: FluxControlNetModel,
71
- ):
72
- super().__init__(
73
- transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer
74
- )
75
- self.register_modules(controlnet=controlnet)
76
-
77
- def prepare_image(
78
- self,
79
- image,
80
- width,
81
- height,
82
- batch_size,
83
- num_images_per_prompt,
84
- device,
85
- dtype,
86
- do_classifier_free_guidance=False,
87
- guess_mode=False,
88
- ):
89
- if isinstance(image, torch.Tensor):
90
- pass
91
- else:
92
- image = self.image_processor.preprocess(image, height=height, width=width)
93
-
94
- image_batch_size = image.shape[0]
95
-
96
- if image_batch_size == 1:
97
- repeat_by = batch_size
98
- else:
99
- # image batch size is the same as prompt batch size
100
- repeat_by = num_images_per_prompt
101
-
102
- image = image.repeat_interleave(repeat_by, dim=0)
103
-
104
- image = image.to(device=device, dtype=dtype)
105
-
106
- if do_classifier_free_guidance and not guess_mode:
107
- image = torch.cat([image] * 2)
108
-
109
- return image
110
-
111
- def prepare_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
112
- num_channels_latents = self.transformer.config.in_channels // 4
113
- control_image = self.prepare_image(
114
- image=control_image,
115
- width=width,
116
- height=height,
117
- batch_size=batch_size * num_images_per_prompt,
118
- num_images_per_prompt=num_images_per_prompt,
119
- device=device,
120
- dtype=self.vae.dtype,
121
- )
122
- height, width = control_image.shape[-2:]
123
-
124
- # vae encode
125
- control_image = self.vae.encode(control_image).latent_dist.sample()
126
- control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
127
-
128
- # pack
129
- height_control_image, width_control_image = control_image.shape[2:]
130
- control_image = self._pack_latents(
131
- control_image,
132
- batch_size * num_images_per_prompt,
133
- num_channels_latents,
134
- height_control_image,
135
- width_control_image,
136
- )
137
-
138
- # Here we ensure that `control_mode` has the same length as the control_image.
139
- if control_mode is not None:
140
- if not isinstance(control_mode, int):
141
- raise ValueError(" For `FluxControlNet`, `control_mode` should be an `int` or `None`")
142
- control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
143
- control_mode = control_mode.view(-1, 1).expand(control_image.shape[0], 1)
144
-
145
- return control_image, control_mode
146
-
147
- def prepare_multi_control(self, control_image, width, height, batch_size, num_images_per_prompt, device, control_mode):
148
- num_channels_latents = self.transformer.config.in_channels // 4
149
- control_images = []
150
- for i, control_image_ in enumerate(control_image):
151
- control_image_ = self.prepare_image(
152
- image=control_image_,
153
- width=width,
154
- height=height,
155
- batch_size=batch_size * num_images_per_prompt,
156
- num_images_per_prompt=num_images_per_prompt,
157
- device=device,
158
- dtype=self.vae.dtype,
159
- )
160
- height, width = control_image_.shape[-2:]
161
-
162
- # vae encode
163
- control_image_ = self.vae.encode(control_image_).latent_dist.sample()
164
- control_image_ = (control_image_ - self.vae.config.shift_factor) * self.vae.config.scaling_factor
165
-
166
- # pack
167
- height_control_image, width_control_image = control_image_.shape[2:]
168
- control_image_ = self._pack_latents(
169
- control_image_,
170
- batch_size * num_images_per_prompt,
171
- num_channels_latents,
172
- height_control_image,
173
- width_control_image,
174
- )
175
- control_images.append(control_image_)
176
-
177
- control_image = control_images
178
-
179
- # Here we ensure that `control_mode` has the same length as the control_image.
180
- if isinstance(control_mode, list) and len(control_mode) != len(control_image):
181
- raise ValueError(
182
- "For Multi-ControlNet, `control_mode` must be a list of the same "
183
- + " length as the number of controlnets (control images) specified"
184
- )
185
- if not isinstance(control_mode, list):
186
- control_mode = [control_mode] * len(control_image)
187
- # set control mode
188
- control_modes = []
189
- for cmode in control_mode:
190
- if cmode is None:
191
- cmode = -1
192
- control_mode = torch.tensor(cmode).expand(control_images[0].shape[0]).to(device, dtype=torch.long)
193
- control_modes.append(control_mode)
194
- control_mode = control_modes
195
-
196
- return control_image, control_mode
197
-
198
- def get_controlnet_keep(self, timesteps, control_guidance_start, control_guidance_end):
199
- controlnet_keep = []
200
- for i in range(len(timesteps)):
201
- keeps = [
202
- 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
203
- for s, e in zip(control_guidance_start, control_guidance_end)
204
- ]
205
- controlnet_keep.append(keeps[0] if isinstance(self.controlnet, FluxControlNetModel) else keeps)
206
- return controlnet_keep
207
-
208
- def get_control_start_end(self, control_guidance_start, control_guidance_end):
209
- if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
210
- control_guidance_start = len(control_guidance_end) * [control_guidance_start]
211
- elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
212
- control_guidance_end = len(control_guidance_start) * [control_guidance_end]
213
- elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
214
- mult = 1 # TODO - why is this 1?
215
- control_guidance_start, control_guidance_end = (
216
- mult * [control_guidance_start],
217
- mult * [control_guidance_end],
218
- )
219
-
220
- return control_guidance_start, control_guidance_end
221
-
222
- @torch.no_grad()
223
- def __call__(
224
- self,
225
- prompt: Union[str, List[str]] = None,
226
- height: Optional[int] = None,
227
- width: Optional[int] = None,
228
- num_inference_steps: int = 30,
229
- timesteps: List[int] = None,
230
- guidance_scale: float = 3.5,
231
- control_guidance_start: Union[float, List[float]] = 0.0,
232
- control_guidance_end: Union[float, List[float]] = 1.0,
233
- control_image: Optional[PipelineImageInput] = None,
234
- control_mode: Optional[Union[int, List[int]]] = None,
235
- controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
236
- negative_prompt: Optional[Union[str, List[str]]] = None,
237
- num_images_per_prompt: Optional[int] = 1,
238
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
239
- latents: Optional[torch.FloatTensor] = None,
240
- prompt_embeds: Optional[torch.FloatTensor] = None,
241
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
242
- output_type: Optional[str] = "pil",
243
- return_dict: bool = True,
244
- joint_attention_kwargs: Optional[Dict[str, Any]] = None,
245
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
246
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
247
- max_sequence_length: int = 128,
248
- ):
249
- r"""
250
- Function invoked when calling the pipeline for generation.
251
-
252
- Args:
253
- prompt (`str` or `List[str]`, *optional*):
254
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
255
- instead.
256
- height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
257
- The height in pixels of the generated image. This is set to 1024 by default for the best results.
258
- width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
259
- The width in pixels of the generated image. This is set to 1024 by default for the best results.
260
- num_inference_steps (`int`, *optional*, defaults to 50):
261
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
262
- expense of slower inference.
263
- timesteps (`List[int]`, *optional*):
264
- Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
265
- in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
266
- passed will be used. Must be in descending order.
267
- guidance_scale (`float`, *optional*, defaults to 5.0):
268
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
269
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
270
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
271
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
272
- usually at the expense of lower image quality.
273
- negative_prompt (`str` or `List[str]`, *optional*):
274
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
275
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
276
- less than `1`).
277
- num_images_per_prompt (`int`, *optional*, defaults to 1):
278
- The number of images to generate per prompt.
279
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
280
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
281
- to make generation deterministic.
282
- latents (`torch.FloatTensor`, *optional*):
283
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
284
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
285
- tensor will ge generated by sampling using the supplied random `generator`.
286
- prompt_embeds (`torch.FloatTensor`, *optional*):
287
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
288
- provided, text embeddings will be generated from `prompt` input argument.
289
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
290
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
291
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
292
- argument.
293
- output_type (`str`, *optional*, defaults to `"pil"`):
294
- The output format of the generate image. Choose between
295
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
296
- return_dict (`bool`, *optional*, defaults to `True`):
297
- Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
298
- of a plain tuple.
299
- joint_attention_kwargs (`dict`, *optional*):
300
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
301
- `self.processor` in
302
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
303
- callback_on_step_end (`Callable`, *optional*):
304
- A function that calls at the end of each denoising steps during the inference. The function is called
305
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
306
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
307
- `callback_on_step_end_tensor_inputs`.
308
- callback_on_step_end_tensor_inputs (`List`, *optional*):
309
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
310
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
311
- `._callback_tensor_inputs` attribute of your pipeline class.
312
- max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
313
-
314
- Examples:
315
-
316
- Returns:
317
- [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
318
- [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
319
- `tuple`. When returning a tuple, the first element is a list with the generated images.
320
- """
321
-
322
- height = height or self.default_sample_size * self.vae_scale_factor
323
- width = width or self.default_sample_size * self.vae_scale_factor
324
- control_guidance_start, control_guidance_end = self.get_control_start_end(
325
- control_guidance_start=control_guidance_start, control_guidance_end=control_guidance_end
326
- )
327
-
328
- # 1. Check inputs. Raise error if not correct
329
- self.check_inputs(
330
- prompt,
331
- height,
332
- width,
333
- negative_prompt=negative_prompt,
334
- prompt_embeds=prompt_embeds,
335
- negative_prompt_embeds=negative_prompt_embeds,
336
- callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
337
- max_sequence_length=max_sequence_length,
338
- )
339
-
340
- self._guidance_scale = guidance_scale
341
- self._joint_attention_kwargs = joint_attention_kwargs
342
- self._interrupt = False
343
-
344
- # 2. Define call parameters
345
- if prompt is not None and isinstance(prompt, str):
346
- batch_size = 1
347
- elif prompt is not None and isinstance(prompt, list):
348
- batch_size = len(prompt)
349
- else:
350
- batch_size = prompt_embeds.shape[0]
351
-
352
- device = self._execution_device
353
-
354
- lora_scale = self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
355
-
356
- (prompt_embeds, negative_prompt_embeds, text_ids) = self.encode_prompt(
357
- prompt=prompt,
358
- negative_prompt=negative_prompt,
359
- do_classifier_free_guidance=self.do_classifier_free_guidance,
360
- prompt_embeds=prompt_embeds,
361
- negative_prompt_embeds=negative_prompt_embeds,
362
- device=device,
363
- num_images_per_prompt=num_images_per_prompt,
364
- max_sequence_length=max_sequence_length,
365
- lora_scale=lora_scale,
366
- )
367
-
368
- if self.do_classifier_free_guidance:
369
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
370
-
371
- # 3. Prepare control image
372
- if control_image is not None:
373
- if isinstance(self.controlnet, FluxControlNetModel):
374
- control_image, control_mode = self.prepare_control(
375
- control_image=control_image,
376
- width=width,
377
- height=height,
378
- batch_size=batch_size,
379
- num_images_per_prompt=num_images_per_prompt,
380
- device=device,
381
- control_mode=control_mode,
382
- )
383
- elif isinstance(self.controlnet, FluxMultiControlNetModel):
384
- control_image, control_mode = self.prepare_multi_control(
385
- control_image=control_image,
386
- width=width,
387
- height=height,
388
- batch_size=batch_size,
389
- num_images_per_prompt=num_images_per_prompt,
390
- device=device,
391
- control_mode=control_mode,
392
- )
393
-
394
- # 4. Prepare timesteps
395
- # Sample from training sigmas
396
- sigmas = get_original_sigmas(
397
- num_train_timesteps=self.scheduler.config.num_train_timesteps, num_inference_steps=num_inference_steps
398
- )
399
- timesteps, num_inference_steps = retrieve_timesteps(
400
- self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas
401
- )
402
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
403
- self._num_timesteps = len(timesteps)
404
-
405
- # 5. Prepare latent variables
406
- num_channels_latents = self.transformer.config.in_channels // 4 # due to patch=2, we devide by 4
407
- latents, latent_image_ids = self.prepare_latents(
408
- batch_size=batch_size * num_images_per_prompt,
409
- num_channels_latents=num_channels_latents,
410
- height=height,
411
- width=width,
412
- dtype=prompt_embeds.dtype,
413
- device=device,
414
- generator=generator,
415
- latents=latents,
416
- )
417
-
418
- # 6. Create tensor stating which controlnets to keep
419
- if control_image is not None:
420
- controlnet_keep = self.get_controlnet_keep(
421
- timesteps=timesteps,
422
- control_guidance_start=control_guidance_start,
423
- control_guidance_end=control_guidance_end,
424
- )
425
-
426
- # EYAL - added the CFG loop
427
- # 7. Denoising loop
428
- with self.progress_bar(total=num_inference_steps) as progress_bar:
429
- for i, t in enumerate(timesteps):
430
- if self.interrupt:
431
- continue
432
-
433
- # expand the latents if we are doing classifier free guidance
434
- latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
435
- # if type(self.scheduler) != FlowMatchEulerDiscreteScheduler:
436
- if not isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
437
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
438
-
439
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
440
- timestep = t.expand(latent_model_input.shape[0])
441
-
442
- # Handling ControlNet
443
- if control_image is not None:
444
- if isinstance(controlnet_keep[i], list):
445
- if isinstance(controlnet_conditioning_scale, list):
446
- cond_scale = controlnet_conditioning_scale
447
- else:
448
- cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
449
- else:
450
- controlnet_cond_scale = controlnet_conditioning_scale
451
- if isinstance(controlnet_cond_scale, list):
452
- controlnet_cond_scale = controlnet_cond_scale[0]
453
- cond_scale = controlnet_cond_scale * controlnet_keep[i]
454
-
455
- # controlnet
456
- controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
457
- hidden_states=latents,
458
- controlnet_cond=control_image,
459
- controlnet_mode=control_mode,
460
- conditioning_scale=cond_scale,
461
- timestep=timestep,
462
- # guidance=guidance,
463
- # pooled_projections=pooled_prompt_embeds,
464
- encoder_hidden_states=prompt_embeds,
465
- txt_ids=text_ids,
466
- img_ids=latent_image_ids,
467
- joint_attention_kwargs=self.joint_attention_kwargs,
468
- return_dict=False,
469
- )
470
- else:
471
- controlnet_block_samples, controlnet_single_block_samples = None, None
472
-
473
- # This is predicts "v" from flow-matching
474
- noise_pred = self.transformer(
475
- hidden_states=latent_model_input,
476
- timestep=timestep,
477
- encoder_hidden_states=prompt_embeds,
478
- joint_attention_kwargs=self.joint_attention_kwargs,
479
- return_dict=False,
480
- txt_ids=text_ids,
481
- img_ids=latent_image_ids,
482
- controlnet_block_samples=controlnet_block_samples,
483
- controlnet_single_block_samples=controlnet_single_block_samples,
484
- )[0]
485
-
486
- # perform guidance
487
- if self.do_classifier_free_guidance:
488
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
489
- noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
490
-
491
- # compute the previous noisy sample x_t -> x_t-1
492
- latents_dtype = latents.dtype
493
- latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
494
-
495
- if latents.dtype != latents_dtype:
496
- if torch.backends.mps.is_available():
497
- # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
498
- latents = latents.to(latents_dtype)
499
-
500
- if callback_on_step_end is not None:
501
- callback_kwargs = {}
502
- for k in callback_on_step_end_tensor_inputs:
503
- callback_kwargs[k] = locals()[k]
504
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
505
-
506
- latents = callback_outputs.pop("latents", latents)
507
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
508
- negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
509
-
510
- # call the callback, if provided
511
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
512
- progress_bar.update()
513
-
514
- if XLA_AVAILABLE:
515
- xm.mark_step()
516
-
517
- if output_type == "latent":
518
- image = latents
519
-
520
- else:
521
- latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
522
- latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
523
- image = self.vae.decode(latents.to(dtype=self.vae.dtype), return_dict=False)[0]
524
- image = self.image_processor.postprocess(image, output_type=output_type)
525
-
526
- # Offload all models
527
- self.maybe_free_model_hooks()
528
-
529
- if not return_dict:
530
- return (image,)
531
-
532
- return FluxPipelineOutput(images=image)