Update README.md
Browse files
README.md
CHANGED
@@ -109,7 +109,6 @@ def get_masked_image(image, image_mask, width, height):
|
|
109 |
image_transforms = transforms.Compose(
|
110 |
[
|
111 |
transforms.ToTensor(),
|
112 |
-
# transforms.Normalize([0.5], [0.5]),
|
113 |
]
|
114 |
)
|
115 |
|
@@ -125,7 +124,6 @@ mask_image = mask_image.convert("L")
|
|
125 |
|
126 |
width, height = init_image.size
|
127 |
|
128 |
-
|
129 |
# Load, init model
|
130 |
controlnet = ControlNetModel().from_config('briaai/DEV-ControlNetInpaintingFast', torch_dtype=torch.float16)
|
131 |
controlnet.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
@@ -133,7 +131,7 @@ controlnet.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
|
133 |
conditioning_channels = 5
|
134 |
)
|
135 |
|
136 |
-
|
137 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
138 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)
|
139 |
|
@@ -146,6 +144,7 @@ pipe.enable_xformers_memory_efficient_attention()
|
|
146 |
|
147 |
generator = torch.Generator(device='cuda:0').manual_seed(123456)
|
148 |
|
|
|
149 |
vae = pipe.vae
|
150 |
|
151 |
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask_image, width, height)
|
@@ -153,7 +152,6 @@ masked_image_tensor = image_transforms(masked_image)
|
|
153 |
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
|
154 |
|
155 |
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
|
156 |
-
# masked_image_tensor = masked_image_tensor.permute((0,3,1,2))
|
157 |
control_latents = vae.encode(
|
158 |
masked_image_tensor[:, :3, :, :].to(vae.dtype)
|
159 |
).latent_dist.sample()
|
@@ -185,6 +183,5 @@ gen_img = pipe(negative_prompt=default_negative_prompt, prompt=prompt,
|
|
185 |
generator=generator).images[0]
|
186 |
|
187 |
|
188 |
-
gen_img.save("./a_park_bench.png")
|
189 |
```
|
190 |
|
|
|
109 |
image_transforms = transforms.Compose(
|
110 |
[
|
111 |
transforms.ToTensor(),
|
|
|
112 |
]
|
113 |
)
|
114 |
|
|
|
124 |
|
125 |
width, height = init_image.size
|
126 |
|
|
|
127 |
# Load, init model
|
128 |
controlnet = ControlNetModel().from_config('briaai/DEV-ControlNetInpaintingFast', torch_dtype=torch.float16)
|
129 |
controlnet.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
|
|
131 |
conditioning_channels = 5
|
132 |
)
|
133 |
|
134 |
+
controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
|
135 |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
136 |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)
|
137 |
|
|
|
144 |
|
145 |
generator = torch.Generator(device='cuda:0').manual_seed(123456)
|
146 |
|
147 |
+
|
148 |
vae = pipe.vae
|
149 |
|
150 |
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask_image, width, height)
|
|
|
152 |
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
|
153 |
|
154 |
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
|
|
|
155 |
control_latents = vae.encode(
|
156 |
masked_image_tensor[:, :3, :, :].to(vae.dtype)
|
157 |
).latent_dist.sample()
|
|
|
183 |
generator=generator).images[0]
|
184 |
|
185 |
|
|
|
186 |
```
|
187 |
|