File size: 8,947 Bytes
7da3d14 0863432 7da3d14 fd8f569 1b3cf5c fd8f569 1811131 fd8f569 9566feb e189e0b fd8f569 9566feb fd8f569 e189e0b 9566feb fd8f569 e189e0b 9566feb 1ea966f e6e5129 fd8f569 9566feb e189e0b fd8f569 e189e0b fd8f569 e189e0b fd8f569 e189e0b 9566feb e189e0b fd8f569 e189e0b fd8f569 9566feb fd8f569 e189e0b fd8f569 e189e0b 9566feb e189e0b fd8f569 9566feb fd8f569 1b3cf5c fd8f569 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
---
license_name: bria-2.3
license: other
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
library_name: diffusers
inference: false
tags:
- text-to-image
- legal liability
- commercial use
extra_gated_description: Model weights from BRIA AI can be obtained with the purchase of a commercial license. Fill in the form below and we reach out to you.
extra_gated_heading: "Fill in this form to request a commercial license for the model"
extra_gated_fields:
Name: text
Company/Org name: text
Org Type (Early/Growth Startup, Enterprise, Academy): text
Role: text
Country: text
Email: text
By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox
---
# BRIA 2.3 ControlNet Inpainting Fast
Trained exclusively on the largest multi-source commercial-grade licensed dataset, BRIA 2.3 inpainting guarantees best quality while safe for commercial use. The model provides full legal liability coverage for copyright and privacy infrigement and harmful content mitigation, as our dataset does not represent copyrighted materials, such as fictional characters, logos or trademarks, public figures, harmful content or privacy infringing content.
BRIA 2.3 is an inpainting model designed to fill masked regions in images based on user-provided textual prompts. The model can be applied in different scenarios, including object removal, replacement, addition, and modification within an image, while also possessing the capability to expand the image.
Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users!
# What's New
BRIA 2.3 ControlNet Inpainting can be applied on top of BRIA 2.3 Text-to-Image and therefore enable to use [Fast-LORA](https://huggingface.co/briaai/BRIA-2.3-FAST-LORA). This results in extremely fast inpainting model, requires only 1.6s using A10 GPU.
### Model Description
- **Developed by:** BRIA AI
- **Model type:** Latent diffusion image-to-image model
- **License:** [bria-2.3 inpainting Licensing terms & conditions](https://bria.ai/bria-huggingface-model-license-agreement/).
- Purchase is required to license and access the model.
- **Model Description:** BRIA 2.3 inpainting was trained exclusively on a professional-grade, licensed dataset. It is designed for commercial use and includes full legal liability coverage.
- **Resources for more information:** [BRIA AI](https://bria.ai/)
### Get Access to the source code and pre-trained model
Interested in BRIA 2.3 inpainting? Our Model is available for purchase.
**Purchasing access to BRIA 2.3 inpainting ensures royalty management and full liability for commercial use.**
*Are you a startup or a student?* We encourage you to apply for our specialized Academia and [Startup Programs](https://pages.bria.ai/the-visual-generative-ai-platform-for-builders-startups-plan?_gl=1*cqrl81*_ga*MTIxMDI2NzI5OC4xNjk5NTQ3MDAz*_ga_WRN60H46X4*MTcwOTM5OTMzNC4yNzguMC4xNzA5Mzk5MzM0LjYwLjAuMA..) to gain access. These programs are designed to support emerging businesses and academic pursuits with our cutting-edge technology.
**Contact us today to unlock the potential of BRIA 2.3 inpainting!**
By submitting the form above, you agree to BRIA’s [Privacy policy](https://bria.ai/privacy-policy/) and [Terms & conditions](https://bria.ai/terms-and-conditions/).
### How To Use
## Download
```python
from huggingface_hub import hf_hub_download
import os
try:
local_dir = os.path.dirname(__file__)
except:
local_dir = '.'
hf_hub_download(repo_id="briaai/BRIA-2.3-ControlNet-Inpainting", filename='controlnet.py', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-2.3-ControlNet-Inpainting", filename='config.json', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-2.3-ControlNet-Inpainting", filename='image_processor.py', local_dir=local_dir)
hf_hub_download(repo_id="briaai/BRIA-2.3-ControlNet-Inpainting", filename='pipeline_controlnet_sd_xl.py', local_dir=local_dir)
```
## Run
```python
from diffusers import (
AutoencoderKL,
LCMScheduler,
)
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
from controlnet import ControlNetModel
import torch
import numpy as np
from PIL import Image
import requests
import PIL
from io import BytesIO
from torchvision import transforms
import os
def resize_image_to_retain_ratio(image):
pixel_number = 1024*1024
granularity_val = 8
ratio = image.size[0] / image.size[1]
width = int((pixel_number * ratio) ** 0.5)
width = width - (width % granularity_val)
height = int(pixel_number / width)
height = height - (height % granularity_val)
image = image.resize((width, height))
return image
def download_image(url):
response = requests.get(url)
return PIL.Image.open(BytesIO(response.content)).convert("RGB")
def get_masked_image(image, image_mask, width, height):
image_mask = image_mask # inpaint area is white
image_mask = image_mask.resize((width, height)) # object to remove is white (1)
image_mask_pil = image_mask
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
masked_image_to_present = image.copy()
masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel
image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey
image = Image.fromarray((image * 255.0).astype(np.uint8))
masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8))
return image, image_mask_pil, masked_image_to_present
image_transforms = transforms.Compose(
[
transforms.ToTensor(),
]
)
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
init_image = download_image(img_url).resize((1024, 1024))
mask_image = download_image(mask_url).resize((1024, 1024))
init_image = resize_image_to_retain_ratio(init_image)
width, height = init_image.size
mask_image = mask_image.convert("L").resize(init_image.size)
width, height = init_image.size
# Load, init model
controlnet = ControlNetModel().from_pretrained("briaai/BRIA-2.3-ControlNet-Inpainting", torch_dtype=torch.float16)
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
pipe.fuse_lora()
pipe = pipe.to(device="cuda")
# pipe.enable_xformers_memory_efficient_attention()
generator = torch.Generator(device="cuda").manual_seed(123456)
vae = pipe.vae
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask_image, width, height)
masked_image_tensor = image_transforms(masked_image)
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda")
control_latents = vae.encode(
masked_image_tensor[:, :3, :, :].to(vae.dtype)
).latent_dist.sample()
control_latents = control_latents * vae.config.scaling_factor
image_mask = np.array(image_mask)[:,:]
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...]
# binarize the mask
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0)
mask_tensor = mask_tensor / 255.0
mask_tensor = mask_tensor.to(device="cuda")
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
masked_image = torch.cat([control_latents, mask_resized], dim=1)
prompt = ""
gen_img = pipe(negative_prompt=default_negative_prompt, prompt=prompt,
controlnet_conditioning_scale=1.0,
num_inference_steps=12,
height=height, width=width,
image = masked_image, # control image
init_image = init_image,
mask_image = mask_tensor,
guidance_scale = 1.2,
generator=generator).images[0]
display(gen_img)
```
|