Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.43 +/- 0.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6308c7f7687cbb48e1bba2821772bf8f6ea479494e28746108d33c5efd8323ee
|
3 |
+
size 108100
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5a830600d0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5a83061180>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1679053011919153915,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9uLiPtkqnTyF0hI/9uLiPtkqnTyF0hI/9uLiPtkqnTyF0hI/9uLiPtkqnTyF0hI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACbMZP+/Jl76VYVy/aT3avl23xz9cPR6/wRLSPxHQ0z/YE448WpaevnpgsT/3Gya+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD24uI+2SqdPIXSEj/qIG27sL8uuhJ91jn24uI+2SqdPIXSEj/qIG27sL8uuhJ91jn24uI+2SqdPIXSEj/qIG27sL8uuhJ91jn24uI+2SqdPIXSEj/qIG27sL8uuhJ91jmUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.44313782 0.01918547 0.5735248 ]\n [0.44313782 0.01918547 0.5735248 ]\n [0.44313782 0.01918547 0.5735248 ]\n [0.44313782 0.01918547 0.5735248 ]]",
|
60 |
+
"desired_goal": "[[ 0.6003881 -0.2964625 -0.860864 ]\n [-0.42624977 1.5602833 -0.61812377]\n [ 1.6411973 1.6547872 0.01734345]\n [-0.30974084 1.3857567 -0.16221605]]",
|
61 |
+
"observation": "[[ 4.4313782e-01 1.9185470e-02 5.7352477e-01 -3.6182948e-03\n -6.6661369e-04 4.0910445e-04]\n [ 4.4313782e-01 1.9185470e-02 5.7352477e-01 -3.6182948e-03\n -6.6661369e-04 4.0910445e-04]\n [ 4.4313782e-01 1.9185470e-02 5.7352477e-01 -3.6182948e-03\n -6.6661369e-04 4.0910445e-04]\n [ 4.4313782e-01 1.9185470e-02 5.7352477e-01 -3.6182948e-03\n -6.6661369e-04 4.0910445e-04]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuUn1PYmXhT1ZCD8+npAEPTy2PD3s+OQ9+8IOPhglvDyIMIM+k4MkPc/ipb32HWw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.11976952 0.06523044 0.18655528]\n [ 0.03236448 0.04607223 0.11180291]\n [ 0.13941567 0.02296691 0.25622964]\n [ 0.04016454 -0.08099901 0.05764576]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0xbX+Ex2/b+UhpRSlIwBbJRLMowBdJRHQKg4cNhmXgN1fZQoaAZoCWgPQwhDq5MzFDf7v5SGlFKUaBVLMmgWR0CoOBbDEWIodX2UKGgGaAloD0MI0F/oEaNn+b+UhpRSlGgVSzJoFkdAqDe7R8c+7nV9lChoBmgJaA9DCIP5K2SuzALAlIaUUpRoFUsyaBZHQKg3ZvJiiIt1fZQoaAZoCWgPQwgawjHLngT1v5SGlFKUaBVLMmgWR0CoOWtnf2sadX2UKGgGaAloD0MItrqcEhDTAcCUhpRSlGgVSzJoFkdAqDkRBVuJlHV9lChoBmgJaA9DCLni4qjcBPq/lIaUUpRoFUsyaBZHQKg4tZ5iVjZ1fZQoaAZoCWgPQwg5DOavkPn8v5SGlFKUaBVLMmgWR0CoOGEcbR4RdX2UKGgGaAloD0MIaDwRxHlYAcCUhpRSlGgVSzJoFkdAqDpiGHpKSXV9lChoBmgJaA9DCH/3jhoT4ve/lIaUUpRoFUsyaBZHQKg6B+uNgjR1fZQoaAZoCWgPQwi05sdfWlTzv5SGlFKUaBVLMmgWR0CoOax15jYqdX2UKGgGaAloD0MIiq2gaYm1BsCUhpRSlGgVSzJoFkdAqDlYAfdRBXV9lChoBmgJaA9DCFhXBWox+APAlIaUUpRoFUsyaBZHQKg7V1schkl1fZQoaAZoCWgPQwg978aCwoAAwJSGlFKUaBVLMmgWR0CoOv0uL740dX2UKGgGaAloD0MI1gEQd/Uq/7+UhpRSlGgVSzJoFkdAqDqhsfq5b3V9lChoBmgJaA9DCKmHaHQHcQHAlIaUUpRoFUsyaBZHQKg6TRb8m8d1fZQoaAZoCWgPQwh1zeSbbW77v5SGlFKUaBVLMmgWR0CoPFhbGFSLdX2UKGgGaAloD0MIr+sX7IYt+7+UhpRSlGgVSzJoFkdAqDv+MKkVOHV9lChoBmgJaA9DCB0hA3l2Of+/lIaUUpRoFUsyaBZHQKg7ovB7/n51fZQoaAZoCWgPQwiu2cpL/scFwJSGlFKUaBVLMmgWR0CoO043WFvidX2UKGgGaAloD0MIgdB6+DJR/L+UhpRSlGgVSzJoFkdAqD1IH7gsLHV9lChoBmgJaA9DCMQI4dHG0f6/lIaUUpRoFUsyaBZHQKg87p8F6iV1fZQoaAZoCWgPQwgBaf8DrNUAwJSGlFKUaBVLMmgWR0CoPJQhnrY5dX2UKGgGaAloD0MIdOygEtfx+7+UhpRSlGgVSzJoFkdAqDxAI+nqFHV9lChoBmgJaA9DCAnBqnr5XQXAlIaUUpRoFUsyaBZHQKg+P4Ju2ql1fZQoaAZoCWgPQwhJgQUwZeAKwJSGlFKUaBVLMmgWR0CoPeU2kzoEdX2UKGgGaAloD0MIRGlv8IWJ+7+UhpRSlGgVSzJoFkdAqD2Jm9QGfXV9lChoBmgJaA9DCN14d2SsFgLAlIaUUpRoFUsyaBZHQKg9NRNyo4x1fZQoaAZoCWgPQwi7tOGwNDD+v5SGlFKUaBVLMmgWR0CoPyafzz3AdX2UKGgGaAloD0MI7GzIPzNIAcCUhpRSlGgVSzJoFkdAqD7MZR8+inV9lChoBmgJaA9DCBo2yvrNxPm/lIaUUpRoFUsyaBZHQKg+cPQOWjZ1fZQoaAZoCWgPQwjoa5bLRmf6v5SGlFKUaBVLMmgWR0CoPhxzRx95dX2UKGgGaAloD0MIIEHxY8x9AcCUhpRSlGgVSzJoFkdAqEAcYGdI5HV9lChoBmgJaA9DCJEKYwtBLgrAlIaUUpRoFUsyaBZHQKg/wf+S8rZ1fZQoaAZoCWgPQwgtlExO7cz8v5SGlFKUaBVLMmgWR0CoP2aaTfSAdX2UKGgGaAloD0MIP6iLFMoC/b+UhpRSlGgVSzJoFkdAqD8SQxN7B3V9lChoBmgJaA9DCB7iH7b0KAPAlIaUUpRoFUsyaBZHQKhBHuUliSd1fZQoaAZoCWgPQwhcPSe9b7z5v5SGlFKUaBVLMmgWR0CoQMSLZSNwdX2UKGgGaAloD0MIaOvgYG/iAMCUhpRSlGgVSzJoFkdAqEBo/zJ6p3V9lChoBmgJaA9DCIJYNnNI6vm/lIaUUpRoFUsyaBZHQKhAFKJVKf51fZQoaAZoCWgPQwhQOpFgqpn9v5SGlFKUaBVLMmgWR0CoQg8lXzUadX2UKGgGaAloD0MIC3va4a/J+7+UhpRSlGgVSzJoFkdAqEG02itaIXV9lChoBmgJaA9DCAlrY+yEFwPAlIaUUpRoFUsyaBZHQKhBWVRDTjN1fZQoaAZoCWgPQwjCMcueBJYBwJSGlFKUaBVLMmgWR0CoQQSzollcdX2UKGgGaAloD0MITTEHQUfr/L+UhpRSlGgVSzJoFkdAqEL3jjrAxnV9lChoBmgJaA9DCMgMVMa/D/+/lIaUUpRoFUsyaBZHQKhCnT0g8r91fZQoaAZoCWgPQwil2xK54CwDwJSGlFKUaBVLMmgWR0CoQkHhS9/SdX2UKGgGaAloD0MIa+9TVWig/r+UhpRSlGgVSzJoFkdAqEHtRYRuj3V9lChoBmgJaA9DCH46HjNQeQrAlIaUUpRoFUsyaBZHQKhD6cvM8ox1fZQoaAZoCWgPQwgAUwYOaOn3v5SGlFKUaBVLMmgWR0CoQ499lVcVdX2UKGgGaAloD0MIxCXHndKBA8CUhpRSlGgVSzJoFkdAqEM0GNaQm3V9lChoBmgJaA9DCOMcdXRcLQDAlIaUUpRoFUsyaBZHQKhC34KQaJh1fZQoaAZoCWgPQwjAl8KDZrcBwJSGlFKUaBVLMmgWR0CoRNDbSJCTdX2UKGgGaAloD0MIPKQYINFkA8CUhpRSlGgVSzJoFkdAqER2cQRPGnV9lChoBmgJaA9DCD/iV6zhIgHAlIaUUpRoFUsyaBZHQKhEGstCiRJ1fZQoaAZoCWgPQwisHFpkO9/5v5SGlFKUaBVLMmgWR0CoQ8Yf4h2XdX2UKGgGaAloD0MIjSlY42x6B8CUhpRSlGgVSzJoFkdAqEYdaGHpKXV9lChoBmgJaA9DCNuJkpBIOwLAlIaUUpRoFUsyaBZHQKhFxB3zMA51fZQoaAZoCWgPQwjcSUT4F8H8v5SGlFKUaBVLMmgWR0CoRWkYfnwHdX2UKGgGaAloD0MII0vmWN4V/L+UhpRSlGgVSzJoFkdAqEUVE3KjjHV9lChoBmgJaA9DCCjS/ZyCfP6/lIaUUpRoFUsyaBZHQKhHpHskY411fZQoaAZoCWgPQwiWsDbGTrj8v5SGlFKUaBVLMmgWR0CoR0rJCBwudX2UKGgGaAloD0MIpYP1fw5z/r+UhpRSlGgVSzJoFkdAqEbv9BKL9HV9lChoBmgJaA9DCP6ABwYQXgXAlIaUUpRoFUsyaBZHQKhGm/nnuAt1fZQoaAZoCWgPQwiNfjScMncCwJSGlFKUaBVLMmgWR0CoSSMIeHSGdX2UKGgGaAloD0MIpFLsaByq97+UhpRSlGgVSzJoFkdAqEjJaiblR3V9lChoBmgJaA9DCK5GdqVl5Pi/lIaUUpRoFUsyaBZHQKhIboAXEZR1fZQoaAZoCWgPQwi5/fLJiuH5v5SGlFKUaBVLMmgWR0CoSBqNZNfxdX2UKGgGaAloD0MIF56Xio3ZAMCUhpRSlGgVSzJoFkdAqEq/nGKhtnV9lChoBmgJaA9DCAJJ2LeTCPi/lIaUUpRoFUsyaBZHQKhKZg75mAd1fZQoaAZoCWgPQwi/ZU6XxcQAwJSGlFKUaBVLMmgWR0CoSgt9x6v8dX2UKGgGaAloD0MIFto5zQItBsCUhpRSlGgVSzJoFkdAqEm34M4LkXV9lChoBmgJaA9DCMkFZ/D3Sw3AlIaUUpRoFUsyaBZHQKhMYm8/Uvx1fZQoaAZoCWgPQwiZvAFmvoMDwJSGlFKUaBVLMmgWR0CoTAjWsijddX2UKGgGaAloD0MIKuPfZ1w4/b+UhpRSlGgVSzJoFkdAqEuuCiAUcnV9lChoBmgJaA9DCEVj7e9sDwTAlIaUUpRoFUsyaBZHQKhLWslsxfx1fZQoaAZoCWgPQwhC0qdV9McDwJSGlFKUaBVLMmgWR0CoTf9aUzKtdX2UKGgGaAloD0MIcD51rFK6BcCUhpRSlGgVSzJoFkdAqE2lyBClanV9lChoBmgJaA9DCEvqBDQRtgjAlIaUUpRoFUsyaBZHQKhNS0QbuMN1fZQoaAZoCWgPQwgpsACmDNwBwJSGlFKUaBVLMmgWR0CoTPfdZaFFdX2UKGgGaAloD0MIgO7Lme3qBsCUhpRSlGgVSzJoFkdAqE+lp7CzknV9lChoBmgJaA9DCEIJM23/agXAlIaUUpRoFUsyaBZHQKhPTDYRNAV1fZQoaAZoCWgPQwhegehJmRQFwJSGlFKUaBVLMmgWR0CoTvGUnogWdX2UKGgGaAloD0MIMV9egH00/7+UhpRSlGgVSzJoFkdAqE6dtKqXGHV9lChoBmgJaA9DCKGd0yzQrvy/lIaUUpRoFUsyaBZHQKhQ7hESdvt1fZQoaAZoCWgPQwj6tmCpLgAEwJSGlFKUaBVLMmgWR0CoUJPPC2tudX2UKGgGaAloD0MI1O/C1mylCMCUhpRSlGgVSzJoFkdAqFA4VZcLSnV9lChoBmgJaA9DCOlDF9S37ALAlIaUUpRoFUsyaBZHQKhP4+NcW0t1fZQoaAZoCWgPQwjWGkrtRfQBwJSGlFKUaBVLMmgWR0CoUe2IoE0SdX2UKGgGaAloD0MIufqxSX7kCsCUhpRSlGgVSzJoFkdAqFGThWHUMHV9lChoBmgJaA9DCG2oGOdvIgvAlIaUUpRoFUsyaBZHQKhROCPIXCV1fZQoaAZoCWgPQwhSEDy+vWv8v5SGlFKUaBVLMmgWR0CoUONwzch1dX2UKGgGaAloD0MIVG8NbJVgAMCUhpRSlGgVSzJoFkdAqFLhplBhQXV9lChoBmgJaA9DCM/b2OxIFQzAlIaUUpRoFUsyaBZHQKhSh1QqI8B1fZQoaAZoCWgPQwhlj1AzpOoBwJSGlFKUaBVLMmgWR0CoUiwIUrTZdX2UKGgGaAloD0MIsYuiBz6GDsCUhpRSlGgVSzJoFkdAqFHXg5zYEnV9lChoBmgJaA9DCOYhUz4EtQPAlIaUUpRoFUsyaBZHQKhT2tJ4B3l1fZQoaAZoCWgPQwhv88ZJYR7+v5SGlFKUaBVLMmgWR0CoU4C1RceKdX2UKGgGaAloD0MIlQ1rKotCA8CUhpRSlGgVSzJoFkdAqFMlJHy3C3V9lChoBmgJaA9DCKinj8AfThDAlIaUUpRoFUsyaBZHQKhS0MXJo011ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81dfb6a0b2663903d4e33a75dc9910b2f0db3fcc71f94028208cf859fcfdf2f9
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf89e77d96b4b6f9db4dd948b26385d6468238a671181945f340e192c591952d
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5a830600d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5a83061180>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679053011919153915, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9uLiPtkqnTyF0hI/9uLiPtkqnTyF0hI/9uLiPtkqnTyF0hI/9uLiPtkqnTyF0hI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAACbMZP+/Jl76VYVy/aT3avl23xz9cPR6/wRLSPxHQ0z/YE448WpaevnpgsT/3Gya+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD24uI+2SqdPIXSEj/qIG27sL8uuhJ91jn24uI+2SqdPIXSEj/qIG27sL8uuhJ91jn24uI+2SqdPIXSEj/qIG27sL8uuhJ91jn24uI+2SqdPIXSEj/qIG27sL8uuhJ91jmUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.44313782 0.01918547 0.5735248 ]\n [0.44313782 0.01918547 0.5735248 ]\n [0.44313782 0.01918547 0.5735248 ]\n [0.44313782 0.01918547 0.5735248 ]]", "desired_goal": "[[ 0.6003881 -0.2964625 -0.860864 ]\n [-0.42624977 1.5602833 -0.61812377]\n [ 1.6411973 1.6547872 0.01734345]\n [-0.30974084 1.3857567 -0.16221605]]", "observation": "[[ 4.4313782e-01 1.9185470e-02 5.7352477e-01 -3.6182948e-03\n -6.6661369e-04 4.0910445e-04]\n [ 4.4313782e-01 1.9185470e-02 5.7352477e-01 -3.6182948e-03\n -6.6661369e-04 4.0910445e-04]\n [ 4.4313782e-01 1.9185470e-02 5.7352477e-01 -3.6182948e-03\n -6.6661369e-04 4.0910445e-04]\n [ 4.4313782e-01 1.9185470e-02 5.7352477e-01 -3.6182948e-03\n -6.6661369e-04 4.0910445e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuUn1PYmXhT1ZCD8+npAEPTy2PD3s+OQ9+8IOPhglvDyIMIM+k4MkPc/ipb32HWw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.11976952 0.06523044 0.18655528]\n [ 0.03236448 0.04607223 0.11180291]\n [ 0.13941567 0.02296691 0.25622964]\n [ 0.04016454 -0.08099901 0.05764576]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0xbX+Ex2/b+UhpRSlIwBbJRLMowBdJRHQKg4cNhmXgN1fZQoaAZoCWgPQwhDq5MzFDf7v5SGlFKUaBVLMmgWR0CoOBbDEWIodX2UKGgGaAloD0MI0F/oEaNn+b+UhpRSlGgVSzJoFkdAqDe7R8c+7nV9lChoBmgJaA9DCIP5K2SuzALAlIaUUpRoFUsyaBZHQKg3ZvJiiIt1fZQoaAZoCWgPQwgawjHLngT1v5SGlFKUaBVLMmgWR0CoOWtnf2sadX2UKGgGaAloD0MItrqcEhDTAcCUhpRSlGgVSzJoFkdAqDkRBVuJlHV9lChoBmgJaA9DCLni4qjcBPq/lIaUUpRoFUsyaBZHQKg4tZ5iVjZ1fZQoaAZoCWgPQwg5DOavkPn8v5SGlFKUaBVLMmgWR0CoOGEcbR4RdX2UKGgGaAloD0MIaDwRxHlYAcCUhpRSlGgVSzJoFkdAqDpiGHpKSXV9lChoBmgJaA9DCH/3jhoT4ve/lIaUUpRoFUsyaBZHQKg6B+uNgjR1fZQoaAZoCWgPQwi05sdfWlTzv5SGlFKUaBVLMmgWR0CoOax15jYqdX2UKGgGaAloD0MIiq2gaYm1BsCUhpRSlGgVSzJoFkdAqDlYAfdRBXV9lChoBmgJaA9DCFhXBWox+APAlIaUUpRoFUsyaBZHQKg7V1schkl1fZQoaAZoCWgPQwg978aCwoAAwJSGlFKUaBVLMmgWR0CoOv0uL740dX2UKGgGaAloD0MI1gEQd/Uq/7+UhpRSlGgVSzJoFkdAqDqhsfq5b3V9lChoBmgJaA9DCKmHaHQHcQHAlIaUUpRoFUsyaBZHQKg6TRb8m8d1fZQoaAZoCWgPQwh1zeSbbW77v5SGlFKUaBVLMmgWR0CoPFhbGFSLdX2UKGgGaAloD0MIr+sX7IYt+7+UhpRSlGgVSzJoFkdAqDv+MKkVOHV9lChoBmgJaA9DCB0hA3l2Of+/lIaUUpRoFUsyaBZHQKg7ovB7/n51fZQoaAZoCWgPQwiu2cpL/scFwJSGlFKUaBVLMmgWR0CoO043WFvidX2UKGgGaAloD0MIgdB6+DJR/L+UhpRSlGgVSzJoFkdAqD1IH7gsLHV9lChoBmgJaA9DCMQI4dHG0f6/lIaUUpRoFUsyaBZHQKg87p8F6iV1fZQoaAZoCWgPQwgBaf8DrNUAwJSGlFKUaBVLMmgWR0CoPJQhnrY5dX2UKGgGaAloD0MIdOygEtfx+7+UhpRSlGgVSzJoFkdAqDxAI+nqFHV9lChoBmgJaA9DCAnBqnr5XQXAlIaUUpRoFUsyaBZHQKg+P4Ju2ql1fZQoaAZoCWgPQwhJgQUwZeAKwJSGlFKUaBVLMmgWR0CoPeU2kzoEdX2UKGgGaAloD0MIRGlv8IWJ+7+UhpRSlGgVSzJoFkdAqD2Jm9QGfXV9lChoBmgJaA9DCN14d2SsFgLAlIaUUpRoFUsyaBZHQKg9NRNyo4x1fZQoaAZoCWgPQwi7tOGwNDD+v5SGlFKUaBVLMmgWR0CoPyafzz3AdX2UKGgGaAloD0MI7GzIPzNIAcCUhpRSlGgVSzJoFkdAqD7MZR8+inV9lChoBmgJaA9DCBo2yvrNxPm/lIaUUpRoFUsyaBZHQKg+cPQOWjZ1fZQoaAZoCWgPQwjoa5bLRmf6v5SGlFKUaBVLMmgWR0CoPhxzRx95dX2UKGgGaAloD0MIIEHxY8x9AcCUhpRSlGgVSzJoFkdAqEAcYGdI5HV9lChoBmgJaA9DCJEKYwtBLgrAlIaUUpRoFUsyaBZHQKg/wf+S8rZ1fZQoaAZoCWgPQwgtlExO7cz8v5SGlFKUaBVLMmgWR0CoP2aaTfSAdX2UKGgGaAloD0MIP6iLFMoC/b+UhpRSlGgVSzJoFkdAqD8SQxN7B3V9lChoBmgJaA9DCB7iH7b0KAPAlIaUUpRoFUsyaBZHQKhBHuUliSd1fZQoaAZoCWgPQwhcPSe9b7z5v5SGlFKUaBVLMmgWR0CoQMSLZSNwdX2UKGgGaAloD0MIaOvgYG/iAMCUhpRSlGgVSzJoFkdAqEBo/zJ6p3V9lChoBmgJaA9DCIJYNnNI6vm/lIaUUpRoFUsyaBZHQKhAFKJVKf51fZQoaAZoCWgPQwhQOpFgqpn9v5SGlFKUaBVLMmgWR0CoQg8lXzUadX2UKGgGaAloD0MIC3va4a/J+7+UhpRSlGgVSzJoFkdAqEG02itaIXV9lChoBmgJaA9DCAlrY+yEFwPAlIaUUpRoFUsyaBZHQKhBWVRDTjN1fZQoaAZoCWgPQwjCMcueBJYBwJSGlFKUaBVLMmgWR0CoQQSzollcdX2UKGgGaAloD0MITTEHQUfr/L+UhpRSlGgVSzJoFkdAqEL3jjrAxnV9lChoBmgJaA9DCMgMVMa/D/+/lIaUUpRoFUsyaBZHQKhCnT0g8r91fZQoaAZoCWgPQwil2xK54CwDwJSGlFKUaBVLMmgWR0CoQkHhS9/SdX2UKGgGaAloD0MIa+9TVWig/r+UhpRSlGgVSzJoFkdAqEHtRYRuj3V9lChoBmgJaA9DCH46HjNQeQrAlIaUUpRoFUsyaBZHQKhD6cvM8ox1fZQoaAZoCWgPQwgAUwYOaOn3v5SGlFKUaBVLMmgWR0CoQ499lVcVdX2UKGgGaAloD0MIxCXHndKBA8CUhpRSlGgVSzJoFkdAqEM0GNaQm3V9lChoBmgJaA9DCOMcdXRcLQDAlIaUUpRoFUsyaBZHQKhC34KQaJh1fZQoaAZoCWgPQwjAl8KDZrcBwJSGlFKUaBVLMmgWR0CoRNDbSJCTdX2UKGgGaAloD0MIPKQYINFkA8CUhpRSlGgVSzJoFkdAqER2cQRPGnV9lChoBmgJaA9DCD/iV6zhIgHAlIaUUpRoFUsyaBZHQKhEGstCiRJ1fZQoaAZoCWgPQwisHFpkO9/5v5SGlFKUaBVLMmgWR0CoQ8Yf4h2XdX2UKGgGaAloD0MIjSlY42x6B8CUhpRSlGgVSzJoFkdAqEYdaGHpKXV9lChoBmgJaA9DCNuJkpBIOwLAlIaUUpRoFUsyaBZHQKhFxB3zMA51fZQoaAZoCWgPQwjcSUT4F8H8v5SGlFKUaBVLMmgWR0CoRWkYfnwHdX2UKGgGaAloD0MII0vmWN4V/L+UhpRSlGgVSzJoFkdAqEUVE3KjjHV9lChoBmgJaA9DCCjS/ZyCfP6/lIaUUpRoFUsyaBZHQKhHpHskY411fZQoaAZoCWgPQwiWsDbGTrj8v5SGlFKUaBVLMmgWR0CoR0rJCBwudX2UKGgGaAloD0MIpYP1fw5z/r+UhpRSlGgVSzJoFkdAqEbv9BKL9HV9lChoBmgJaA9DCP6ABwYQXgXAlIaUUpRoFUsyaBZHQKhGm/nnuAt1fZQoaAZoCWgPQwiNfjScMncCwJSGlFKUaBVLMmgWR0CoSSMIeHSGdX2UKGgGaAloD0MIpFLsaByq97+UhpRSlGgVSzJoFkdAqEjJaiblR3V9lChoBmgJaA9DCK5GdqVl5Pi/lIaUUpRoFUsyaBZHQKhIboAXEZR1fZQoaAZoCWgPQwi5/fLJiuH5v5SGlFKUaBVLMmgWR0CoSBqNZNfxdX2UKGgGaAloD0MIF56Xio3ZAMCUhpRSlGgVSzJoFkdAqEq/nGKhtnV9lChoBmgJaA9DCAJJ2LeTCPi/lIaUUpRoFUsyaBZHQKhKZg75mAd1fZQoaAZoCWgPQwi/ZU6XxcQAwJSGlFKUaBVLMmgWR0CoSgt9x6v8dX2UKGgGaAloD0MIFto5zQItBsCUhpRSlGgVSzJoFkdAqEm34M4LkXV9lChoBmgJaA9DCMkFZ/D3Sw3AlIaUUpRoFUsyaBZHQKhMYm8/Uvx1fZQoaAZoCWgPQwiZvAFmvoMDwJSGlFKUaBVLMmgWR0CoTAjWsijddX2UKGgGaAloD0MIKuPfZ1w4/b+UhpRSlGgVSzJoFkdAqEuuCiAUcnV9lChoBmgJaA9DCEVj7e9sDwTAlIaUUpRoFUsyaBZHQKhLWslsxfx1fZQoaAZoCWgPQwhC0qdV9McDwJSGlFKUaBVLMmgWR0CoTf9aUzKtdX2UKGgGaAloD0MIcD51rFK6BcCUhpRSlGgVSzJoFkdAqE2lyBClanV9lChoBmgJaA9DCEvqBDQRtgjAlIaUUpRoFUsyaBZHQKhNS0QbuMN1fZQoaAZoCWgPQwgpsACmDNwBwJSGlFKUaBVLMmgWR0CoTPfdZaFFdX2UKGgGaAloD0MIgO7Lme3qBsCUhpRSlGgVSzJoFkdAqE+lp7CzknV9lChoBmgJaA9DCEIJM23/agXAlIaUUpRoFUsyaBZHQKhPTDYRNAV1fZQoaAZoCWgPQwhegehJmRQFwJSGlFKUaBVLMmgWR0CoTvGUnogWdX2UKGgGaAloD0MIMV9egH00/7+UhpRSlGgVSzJoFkdAqE6dtKqXGHV9lChoBmgJaA9DCKGd0yzQrvy/lIaUUpRoFUsyaBZHQKhQ7hESdvt1fZQoaAZoCWgPQwj6tmCpLgAEwJSGlFKUaBVLMmgWR0CoUJPPC2tudX2UKGgGaAloD0MI1O/C1mylCMCUhpRSlGgVSzJoFkdAqFA4VZcLSnV9lChoBmgJaA9DCOlDF9S37ALAlIaUUpRoFUsyaBZHQKhP4+NcW0t1fZQoaAZoCWgPQwjWGkrtRfQBwJSGlFKUaBVLMmgWR0CoUe2IoE0SdX2UKGgGaAloD0MIufqxSX7kCsCUhpRSlGgVSzJoFkdAqFGThWHUMHV9lChoBmgJaA9DCG2oGOdvIgvAlIaUUpRoFUsyaBZHQKhROCPIXCV1fZQoaAZoCWgPQwhSEDy+vWv8v5SGlFKUaBVLMmgWR0CoUONwzch1dX2UKGgGaAloD0MIVG8NbJVgAMCUhpRSlGgVSzJoFkdAqFLhplBhQXV9lChoBmgJaA9DCM/b2OxIFQzAlIaUUpRoFUsyaBZHQKhSh1QqI8B1fZQoaAZoCWgPQwhlj1AzpOoBwJSGlFKUaBVLMmgWR0CoUiwIUrTZdX2UKGgGaAloD0MIsYuiBz6GDsCUhpRSlGgVSzJoFkdAqFHXg5zYEnV9lChoBmgJaA9DCOYhUz4EtQPAlIaUUpRoFUsyaBZHQKhT2tJ4B3l1fZQoaAZoCWgPQwhv88ZJYR7+v5SGlFKUaBVLMmgWR0CoU4C1RceKdX2UKGgGaAloD0MIlQ1rKotCA8CUhpRSlGgVSzJoFkdAqFMlJHy3C3V9lChoBmgJaA9DCKinj8AfThDAlIaUUpRoFUsyaBZHQKhS0MXJo011ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (775 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.4274851518683134, "std_reward": 0.6903209831376387, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-17T12:28:49.068131"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a84c3e5f476cbd87159b1493e63c1b320e64a0d4fdd492e305f9e32c6f222f9b
|
3 |
+
size 3056
|