update model card README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
@@ -17,13 +16,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
# bert-finetuned-ner
|
19 |
|
20 |
-
This model is a fine-tuned version of [
|
21 |
It achieves the following results on the evaluation set:
|
22 |
-
- Loss: 0.
|
23 |
-
- Precision: 0.
|
24 |
-
- Recall: 0.
|
25 |
-
- F1: 0.
|
26 |
-
- Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -42,28 +41,31 @@ More information needed
|
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
-
- learning_rate:
|
46 |
-
- train_batch_size:
|
47 |
-
- eval_batch_size:
|
48 |
- seed: 42
|
|
|
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
|
|
51 |
- num_epochs: 5
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
-
- Transformers 4.
|
67 |
- Pytorch 1.10.0+cu111
|
68 |
-
- Datasets 1.18.
|
69 |
-
- Tokenizers 0.11.
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
metrics:
|
|
|
16 |
|
17 |
# bert-finetuned-ner
|
18 |
|
19 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6434
|
22 |
+
- Precision: 0.8589
|
23 |
+
- Recall: 0.8686
|
24 |
+
- F1: 0.8637
|
25 |
+
- Accuracy: 0.8324
|
26 |
|
27 |
## Model description
|
28 |
|
|
|
41 |
### Training hyperparameters
|
42 |
|
43 |
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 1
|
46 |
+
- eval_batch_size: 1
|
47 |
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 8
|
49 |
+
- total_train_batch_size: 8
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
- num_epochs: 5
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.615 | 1.0 | 1741 | 0.6111 | 0.8200 | 0.8652 | 0.8420 | 0.8046 |
|
60 |
+
| 0.4795 | 2.0 | 3482 | 0.5366 | 0.8456 | 0.8803 | 0.8626 | 0.8301 |
|
61 |
+
| 0.3705 | 3.0 | 5223 | 0.5412 | 0.8527 | 0.8786 | 0.8655 | 0.8339 |
|
62 |
+
| 0.2749 | 4.0 | 6964 | 0.5906 | 0.8559 | 0.8711 | 0.8634 | 0.8316 |
|
63 |
+
| 0.2049 | 5.0 | 8705 | 0.6434 | 0.8589 | 0.8686 | 0.8637 | 0.8324 |
|
64 |
|
65 |
|
66 |
### Framework versions
|
67 |
|
68 |
+
- Transformers 4.17.0
|
69 |
- Pytorch 1.10.0+cu111
|
70 |
+
- Datasets 1.18.4
|
71 |
+
- Tokenizers 0.11.6
|