update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- precision
|
6 |
+
- recall
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: Longformer-finetuned-comp5
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Longformer-finetuned-comp5
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8180
|
22 |
+
- Precision: 0.5680
|
23 |
+
- Recall: 0.7490
|
24 |
+
- F1: 0.6430
|
25 |
+
- Accuracy: 0.6430
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 5e-05
|
45 |
+
- train_batch_size: 1
|
46 |
+
- eval_batch_size: 1
|
47 |
+
- seed: 42
|
48 |
+
- gradient_accumulation_steps: 8
|
49 |
+
- total_train_batch_size: 8
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- lr_scheduler_warmup_ratio: 0.1
|
53 |
+
- num_epochs: 7
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
59 |
+
| 0.8296 | 1.0 | 1012 | 0.5801 | 0.4806 | 0.6633 | 0.5448 | 0.5448 |
|
60 |
+
| 0.5367 | 2.0 | 2024 | 0.5386 | 0.5617 | 0.7042 | 0.6172 | 0.6172 |
|
61 |
+
| 0.4109 | 3.0 | 3036 | 0.5755 | 0.5590 | 0.7261 | 0.6248 | 0.6248 |
|
62 |
+
| 0.3088 | 4.0 | 4048 | 0.6167 | 0.5775 | 0.7394 | 0.6435 | 0.6435 |
|
63 |
+
| 0.2234 | 5.0 | 5060 | 0.7098 | 0.5626 | 0.7477 | 0.6370 | 0.6370 |
|
64 |
+
| 0.1637 | 6.0 | 6072 | 0.7399 | 0.5742 | 0.7413 | 0.6438 | 0.6438 |
|
65 |
+
| 0.1236 | 7.0 | 7084 | 0.8180 | 0.5680 | 0.7490 | 0.6430 | 0.6430 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.17.0
|
71 |
+
- Pytorch 1.10.0+cu111
|
72 |
+
- Datasets 2.0.0
|
73 |
+
- Tokenizers 0.11.6
|