--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: GPT2_v5 results: [] --- # GPT2_v5 This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7670 - Precision: 0.7725 - Recall: 0.8367 - F1: 0.4733 - Accuracy: 0.7646 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.2212 | 1.0 | 1012 | 0.7874 | 0.7557 | 0.7560 | 0.4041 | 0.7150 | | 0.7162 | 2.0 | 2024 | 0.7007 | 0.7495 | 0.8714 | 0.4855 | 0.7647 | | 0.6241 | 3.0 | 3036 | 0.6799 | 0.7681 | 0.8532 | 0.4804 | 0.7702 | | 0.5545 | 4.0 | 4048 | 0.6997 | 0.7635 | 0.8658 | 0.4814 | 0.7714 | | 0.4963 | 5.0 | 5060 | 0.7186 | 0.7696 | 0.8470 | 0.4764 | 0.7669 | | 0.449 | 6.0 | 6072 | 0.7436 | 0.7711 | 0.8382 | 0.4731 | 0.7644 | | 0.4182 | 7.0 | 7084 | 0.7670 | 0.7725 | 0.8367 | 0.4733 | 0.7646 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1