File size: 2,083 Bytes
93b6430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: GPT2_v5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# GPT2_v5

This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7670
- Precision: 0.7725
- Recall: 0.8367
- F1: 0.4733
- Accuracy: 0.7646

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.2212        | 1.0   | 1012 | 0.7874          | 0.7557    | 0.7560 | 0.4041 | 0.7150   |
| 0.7162        | 2.0   | 2024 | 0.7007          | 0.7495    | 0.8714 | 0.4855 | 0.7647   |
| 0.6241        | 3.0   | 3036 | 0.6799          | 0.7681    | 0.8532 | 0.4804 | 0.7702   |
| 0.5545        | 4.0   | 4048 | 0.6997          | 0.7635    | 0.8658 | 0.4814 | 0.7714   |
| 0.4963        | 5.0   | 5060 | 0.7186          | 0.7696    | 0.8470 | 0.4764 | 0.7669   |
| 0.449         | 6.0   | 6072 | 0.7436          | 0.7711    | 0.8382 | 0.4731 | 0.7644   |
| 0.4182        | 7.0   | 7084 | 0.7670          | 0.7725    | 0.8367 | 0.4733 | 0.7646   |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.0+cu111
- Datasets 2.1.0
- Tokenizers 0.12.1