bouthros commited on
Commit
b6aecae
·
verified ·
1 Parent(s): 16dc6f9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +116 -6
README.md CHANGED
@@ -11,12 +11,122 @@ language:
11
  - en
12
  ---
13
 
14
- # Uploaded model
15
 
16
- - **Developed by:** bouthros
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.1-bnb-4bit
19
 
20
- This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  - en
12
  ---
13
 
14
+ # Model Card for Mistral-7B-Instruct-v0.1-Unsloth-MedicalQA
15
 
16
+ <img src="https://files.oaiusercontent.com/file-SRkkqbc6KKUWGAfvWfrZpA?se=2025-01-11T20%3A14%3A07Z&sp=r&sv=2024-08-04&sr=b&rscc=max-age%3D604800%2C%20immutable%2C%20private&rscd=attachment%3B%20filename%3D9f951e1f-ad60-431b-b016-e4d79f30a3ab.webp&sig=PwbELJUHXlMlgk3T4MoDPH7nVYfPEXN0ypjadk1DuEc%3D" alt="drawing" width="400"/>
 
 
17
 
18
+ <font color="FF0000" size="5"><b>
19
+ This is a medical question-answering model fine-tuned for healthcare domain</b></font>
20
 
21
+ <br><b>Foundation Model: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1<br/>
22
+ Dataset: https://huggingface.co/datasets/Laurent1/MedQuad-MedicalQnADataset_128tokens_max<br/></b>
23
+
24
+ The model has been fine-tuned using CUDA-enabled GPU hardware with optimized training through [Unsloth](https://github.com/unslothai/unsloth).
25
+
26
+ [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="100"/>](https://github.com/unslothai/unsloth)
27
+
28
+
29
+ ## Model Details
30
+
31
+ The model is based upon the foundation model: Mistral-7B-Instruct-v0.1.<br/>
32
+ It has been tuned with Supervised Fine-tuning Trainer using the Unsloth optimization framework for faster and more efficient training.
33
+
34
+ ### Libraries
35
+ - unsloth
36
+ - transformers
37
+ - torch
38
+ - trl
39
+ - peft
40
+ - einops
41
+ - bitsandbytes
42
+ - datasets
43
+
44
+ ## Training Configuration
45
+
46
+ ### Model Parameters
47
+ - max_sequence_length = 2048
48
+ - load_in_4bit = True
49
+ - LoRA rank (r) = 32
50
+ - lora_alpha = 16
51
+ - lora_dropout = 0
52
+
53
+ ### Target Modules for LoRA
54
+ - q_proj
55
+ - k_proj
56
+ - v_proj
57
+ - o_proj
58
+ - gate_proj
59
+ - up_proj
60
+ - down_proj
61
+
62
+ ### Training Hyperparameters
63
+ - per_device_train_batch_size = 2
64
+ - gradient_accumulation_steps = 16
65
+ - warmup_steps = 5
66
+ - warmup_ratio = 0.03
67
+ - max_steps = 1600
68
+ - learning_rate = 1e-4
69
+ - weight_decay = 0.01
70
+ - lr_scheduler_type = "linear"
71
+ - optimizer = "paged_adamw_32bit"
72
+
73
+ ## Training Statistics
74
+
75
+ ### Hardware Utilization
76
+ - Training duration: 10,561.28 seconds (approximately 176.02 minutes)
77
+ - Peak reserved memory: 5.416 GB
78
+ - Peak reserved memory for training: 0.748 GB
79
+ - Peak reserved memory % of max memory: 13.689%
80
+ - Peak reserved memory for training % of max memory: 1.891%
81
+
82
+ ### Dataset
83
+ The model was trained on the MedQuad dataset, which contains medical questions and answers. The training data was processed using a chat template format for instruction-tuning.
84
+
85
+ ## Bias, Risks, and Limitations
86
+
87
+ <font color="FF0000">
88
+ Users (both direct and downstream) should be aware of the following:
89
+
90
+ 1. This model is intended for medical question-answering but should not be used as a substitute for professional medical advice.
91
+ 2. The model's responses should be verified by healthcare professionals before making any medical decisions.
92
+ 3. Generation of plausible yet incorrect medical information remains a possibility.
93
+ 4. The model's knowledge is limited to its training data and may not cover all medical conditions or recent medical developments.
94
+ </font>
95
+
96
+ ## Usage
97
+
98
+ The model can be loaded and used with the Unsloth library:
99
+
100
+ ```python
101
+ from unsloth import FastLanguageModel
102
+ max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
103
+ dtype = (
104
+ None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
105
+ )
106
+ model, tokenizer = FastLanguageModel.from_pretrained(
107
+ "bouthros/Mistral-7B-Instruct-v0.1-Unsloth-MedicalQA",
108
+ max_seq_length=2048,
109
+ load_in_4bit=True,
110
+ )
111
+ ```
112
+
113
+ Example usage:
114
+ ```python
115
+ messages = [
116
+ {"from": "human", "value": "What are the types of liver cancer?"},
117
+ ]
118
+ inputs = tokenizer.apply_chat_template(
119
+ messages,
120
+ tokenize=True,
121
+ add_generation_prompt=True,
122
+ return_tensors="pt"
123
+ ).to("cuda")
124
+ ```
125
+
126
+ ## Model Access
127
+
128
+ The model is available on Hugging Face Hub at: bouthros/Mistral-7B-Instruct-v0.1-Unsloth-MedicalQA
129
+
130
+ ## Citation
131
+
132
+ If you use this model, please cite the original Mistral-7B-Instruct-v0.1 model and the MedQuad dataset.