botcon commited on
Commit
795855b
·
1 Parent(s): 63e75c0

Upload bert.py

Browse files
Files changed (1) hide show
  1. bert.py +137 -0
bert.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import random
3
+ from transformers import AutoTokenizer, BertForSequenceClassification
4
+ from datasets import load_dataset
5
+ from transformers import LukePreTrainedModel, LukeModel, AutoTokenizer, TrainingArguments, default_data_collator, Trainer, AutoModelForQuestionAnswering
6
+ from transformers.modeling_outputs import ModelOutput
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import numpy as np
10
+ from tqdm import tqdm
11
+ import evaluate
12
+ import torch
13
+ from dataclasses import dataclass
14
+ from datasets import load_dataset, concatenate_datasets, load_metric
15
+ from torch import nn
16
+ from torch.nn import CrossEntropyLoss
17
+ import collections
18
+ import re
19
+
20
+ torch.backends.cuda.matmul.allow_tf32 = True
21
+ torch.backends.cudnn.allow_tf32 = True
22
+ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
23
+
24
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
25
+ model = BertForSequenceClassification.from_pretrained("bert-base-uncased").to(device)
26
+
27
+ def preprocess_training_examples(examples):
28
+ questions = [q.strip() for q in examples["question"]]
29
+ answers = []
30
+ labels = []
31
+ final_questions = []
32
+ # Generate close-looking answers from existing context
33
+ for i in range(len(questions)):
34
+ context = examples["context"][i]
35
+ words = context.split()
36
+ final_questions.append(questions[i])
37
+ original_answer = examples["answers"][i]["text"][0]
38
+ original_words = original_answer.split()
39
+ answers.append(original_answer)
40
+ labels.append(1)
41
+ answer_start = examples["answers"][i]["answer_start"][0]
42
+ answer_end = answer_start + len(original_answer)
43
+
44
+ begin_context = context[:answer_start]
45
+ end_context = context[answer_end:]
46
+
47
+ end = 1 if len(original_words) == 1 else 3
48
+ case_ind = random.randint(0, end)
49
+ pre_words = begin_context.rsplit(maxsplit=1)
50
+ post_words = end_context.split(maxsplit=1)
51
+ if case_ind == 0 and pre_words: # Append left
52
+ words = pre_words
53
+ wrong_context = " ".join([words[-1], original_answer])
54
+ final_questions.append(questions[i])
55
+ answers.append(wrong_context)
56
+ labels.append(0)
57
+ elif case_ind == 1 and post_words: # Append right
58
+ words = post_words
59
+ wrong_context = " ".join([original_answer, words[0]])
60
+ final_questions.append(questions[i])
61
+ answers.append(wrong_context)
62
+ labels.append(0)
63
+ elif case_ind == 3: # Drop left
64
+ wrong_context = " ".join(original_words[1:])
65
+ final_questions.append(questions[i])
66
+ answers.append(wrong_context)
67
+ labels.append(0)
68
+ elif case_ind == 4: # Drop right
69
+ wrong_context = " ".join(original_words[:len(original_words) - 1])
70
+ final_questions.append(questions[i])
71
+ answers.append(wrong_context)
72
+ labels.append(0)
73
+
74
+ inputs = tokenizer(
75
+ final_questions,
76
+ answers,
77
+ padding="max_length",
78
+ )
79
+ inputs["labels"] = labels
80
+ return inputs
81
+
82
+ raw_datasets = load_dataset("squad")
83
+ raw_train = raw_datasets["train"]
84
+ raw_eval = raw_datasets["validation"]
85
+
86
+ train_dataset = raw_train.map(
87
+ preprocess_training_examples,
88
+ batched=True,
89
+ remove_columns=raw_train.column_names,
90
+ )
91
+
92
+ eval_dataset = raw_eval.map(
93
+ preprocess_training_examples,
94
+ batched=True,
95
+ remove_columns=raw_train.column_names,
96
+ )
97
+
98
+ batch_size = 8
99
+
100
+ # train_dataset = train_dataset.with_format("torch")
101
+
102
+ args = TrainingArguments(
103
+ "right_span_bert",
104
+ evaluation_strategy = "no",
105
+ save_strategy="epoch",
106
+ learning_rate=2e-5,
107
+ per_device_train_batch_size=batch_size,
108
+ per_device_eval_batch_size=batch_size,
109
+ num_train_epochs=2,
110
+ weight_decay=0.01,
111
+ push_to_hub=True,
112
+ fp16=True
113
+ )
114
+
115
+ def compute_metrics(eval_pred):
116
+ load_accuracy = evaluate.load("accuracy")
117
+ load_f1 = evaluate.load("f1")
118
+ logits, labels = eval_pred
119
+ predictions = np.argmax(logits, axis=-1)
120
+ accuracy = load_accuracy.compute(predictions=predictions, references=labels)["accuracy"]
121
+ f1 = load_f1.compute(predictions=predictions, references=labels)["f1"]
122
+ return {"accuracy": accuracy, "f1": f1}
123
+
124
+ trainer = Trainer(
125
+ model,
126
+ args,
127
+ train_dataset=train_dataset,
128
+ eval_dataset=eval_dataset,
129
+ data_collator=default_data_collator,
130
+ tokenizer=tokenizer,
131
+ compute_metrics=compute_metrics
132
+ )
133
+
134
+ trainer.train()
135
+
136
+ res = trainer.evaluate()
137
+ print(res)