File size: 21,047 Bytes
8838f38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
from transformers import LukePreTrainedModel, LukeModel, AutoTokenizer, TrainingArguments, default_data_collator, Trainer, AutoModelForQuestionAnswering
from transformers.modeling_outputs import ModelOutput
from typing import Optional, Tuple, Union
import numpy as np
from tqdm import tqdm
import evaluate
import torch
from dataclasses import dataclass
from datasets import load_dataset, concatenate_datasets
from torch import nn
from torch.nn import CrossEntropyLoss
import collections
import re
PEFT = False
tf32 = True
fp16= True
train = False
test = True
trained_model = "LUKE_squad_finetuned_qa_tf32"
train_checkpoint = None
# For testing
tokenizer_list = ["xlnet-base-cased", "roberta-base"]
model_list = ["XLNET_squad_finetuned_qa_tf32", "LUKE_squad_finetuned_qa_tf32"]
question_list = ["who", "what", "where", "when", "which", "how", "whom"]
base_tokenizer = "roberta-base"
base_model = "studio-ousia/luke-base"
# base_tokenizer = "xlnet-base-cased"
# base_model = "xlnet-base-cased"
# base_tokenizer = "bert-base-cased"
# base_model = "SpanBERT/spanbert-base-cased"
torch.backends.cuda.matmul.allow_tf32 = tf32
torch.backends.cudnn.allow_tf32 = tf32
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
# https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/luke/modeling_luke.py#L319-L353
# Taken from HF repository, easier to include additional features -- Currently identical to LukeForQuestionAnswering by HF
@dataclass
class LukeQuestionAnsweringModelOutput(ModelOutput):
"""
Outputs of question answering models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class AugmentedLukeForQuestionAnswering(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
# This is 2.
self.num_labels = config.num_labels
self.luke = LukeModel(config, add_pooling_layer=False)
'''
Any improvement to the model are expected here. Additional features, anything...
'''
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.FloatTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
sequence_output = outputs.last_hidden_state
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
return tuple(
v
for v in [
total_loss,
start_logits,
end_logits,
outputs.hidden_states,
outputs.entity_hidden_states,
outputs.attentions,
]
if v is not None
)
return LukeQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
# Get data to train model - squadshift is designed as a validation/testing set, so there are multiple answers, take the shortest
def get_squadshifts_training():
wiki = load_dataset("squadshifts", "new_wiki")["test"]
nyt = load_dataset("squadshifts", "nyt")["test"]
reddit = load_dataset("squadshifts", "reddit")["test"]
raw_dataset = concatenate_datasets([wiki, nyt, reddit])
updated = raw_dataset.map(validation_to_train)
return updated
def validation_to_train(example):
answers = example["answers"]
answer_text = answers["text"]
index_min = min(range(len(answer_text)), key=lambda x : len(answer_text.__getitem__(x)))
answers["text"] = answers["text"][index_min:index_min+1]
answers["answer_start"] = answers["answer_start"][index_min:index_min+1]
return example
# Get subset with specific question word
def get_dataset(dataset, pattern):
return dataset.filter(lambda x : bool(re.search(r"\b{}\b".format(pattern), x["question"], flags=re.IGNORECASE)))
if __name__ == "__main__":
# Setting up tokenizer and helper functions
# Work-around for FastTokenizer - RoBERTa and LUKE share the same subword vocab, and we are not using entities functions of LUKE-tokenizer anyways
tokenizer = AutoTokenizer.from_pretrained(base_tokenizer)
# Necessary initialization
max_length = 500
stride = 128
batch_size = 8
n_best = 20
max_answer_length = 30
metric = evaluate.load("squad")
raw_datasets = load_dataset("squad")
raw_train = raw_datasets["train"]
raw_validation = raw_datasets["validation"]
def compute_metrics(start_logits, end_logits, features, examples):
example_to_features = collections.defaultdict(list)
for idx, feature in enumerate(features):
example_to_features[feature["example_id"]].append(idx)
predicted_answers = []
for example in tqdm(examples):
example_id = example["id"]
context = example["context"]
answers = []
# Loop through all features associated with that example
for feature_index in example_to_features[example_id]:
start_logit = start_logits[feature_index]
end_logit = end_logits[feature_index]
offsets = features[feature_index]["offset_mapping"]
start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist()
end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist()
for start_index in start_indexes:
for end_index in end_indexes:
# Skip answers that are not fully in the context
if offsets[start_index] is None or offsets[end_index] is None:
continue
# Skip answers with a length that is either < 0 or > max_answer_length
if (
end_index < start_index
or end_index - start_index + 1 > max_answer_length
):
continue
answer = {
"text": context[offsets[start_index][0] : offsets[end_index][1]],
"logit_score": start_logit[start_index] + end_logit[end_index],
}
answers.append(answer)
# Select the answer with the best score
if len(answers) > 0:
best_answer = max(answers, key=lambda x: x["logit_score"])
predicted_answers.append(
{"id": example_id, "prediction_text": best_answer["text"]}
)
else:
predicted_answers.append({"id": example_id, "prediction_text": ""})
theoretical_answers = [{"id": ex["id"], "answers": ex["answers"]} for ex in examples]
return metric.compute(predictions=predicted_answers, references=theoretical_answers)
def preprocess_training_examples(examples):
questions = [q.strip() for q in examples["question"]]
inputs = tokenizer(
questions,
examples["context"],
max_length=max_length,
truncation="only_second",
stride=stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
offset_mapping = inputs.pop("offset_mapping")
sample_map = inputs.pop("overflow_to_sample_mapping")
answers = examples["answers"]
start_positions = []
end_positions = []
for i, offset in enumerate(offset_mapping):
sample_idx = sample_map[i]
answer = answers[sample_idx]
start_char = answer["answer_start"][0]
end_char = answer["answer_start"][0] + len(answer["text"][0])
sequence_ids = inputs.sequence_ids(i)
# Find the start and end of the context
idx = 0
while sequence_ids[idx] != 1:
idx += 1
context_start = idx
while sequence_ids[idx] == 1:
idx += 1
context_end = idx - 1
# If the answer is not fully inside the context, label is (0, 0)
if offset[context_start][0] > start_char or offset[context_end][1] < end_char:
start_positions.append(0)
end_positions.append(0)
else:
# Otherwise it's the start and end token positions
idx = context_start
while idx <= context_end and offset[idx][0] <= start_char:
idx += 1
start_positions.append(idx - 1)
idx = context_end
while idx >= context_start and offset[idx][1] >= end_char:
idx -= 1
end_positions.append(idx + 1)
inputs["start_positions"] = start_positions
inputs["end_positions"] = end_positions
return inputs
def preprocess_validation_examples(examples):
questions = [q.strip() for q in examples["question"]]
inputs = tokenizer(
questions,
examples["context"],
max_length=max_length,
truncation="only_second",
stride=stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding="max_length",
)
sample_map = inputs.pop("overflow_to_sample_mapping")
example_ids = []
for i in range(len(inputs["input_ids"])):
sample_idx = sample_map[i]
example_ids.append(examples["id"][sample_idx])
sequence_ids = inputs.sequence_ids(i)
offset = inputs["offset_mapping"][i]
inputs["offset_mapping"][i] = [
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
]
inputs["example_id"] = example_ids
return inputs
if train:
model = AutoModelForQuestionAnswering.from_pretrained(base_model).to(device)
# For squadshift
raw_train = get_squadshifts_training()
train_dataset = raw_train.map(
preprocess_training_examples,
batched=True,
remove_columns=raw_train.column_names,
)
validation_dataset = raw_validation.map(
preprocess_validation_examples,
batched=True,
remove_columns=raw_validation.column_names,
)
# --------------- PEFT -------------------- # One epoch without PEFT took about 2h on my computer with CUDA - performance of PEFT kinda ass though
if PEFT:
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
# ---- For all linear layers ----
import re
pattern = r'\((\w+)\): Linear'
linear_layers = re.findall(pattern, str(model.modules))
target_modules = list(set(linear_layers))
# If using peft, can consider increaisng r for better performance
peft_config = LoraConfig(
task_type=TaskType.QUESTION_ANS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=target_modules, bias='all'
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
trained_model += "_PEFT"
# ------------------------------------------ #
args = TrainingArguments(
trained_model,
evaluation_strategy = "no",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=3,
weight_decay=0.01,
push_to_hub=True,
fp16=fp16
)
trainer = Trainer(
model,
args,
train_dataset=train_dataset,
eval_dataset=validation_dataset,
data_collator=default_data_collator,
tokenizer=tokenizer
)
trainer.train(train_checkpoint)
if test:
out = "out.txt"
for j in range(len(tokenizer_list)):
model = AutoModelForQuestionAnswering.from_pretrained(model_list[j]).to(device)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_list[j])
# Normal case
# test_validation = raw_validation
for question in question_list:
test_validation = get_dataset(raw_validation, question)
exact_match = 0
f1 = 0
validation_size = 100
start = 0
end = validation_size
with torch.no_grad():
while start < len(test_validation):
small_eval_set = test_validation.select(range(start, min(end, len(test_validation))))
eval_set = small_eval_set.map(
preprocess_validation_examples,
batched=True,
remove_columns=test_validation.column_names
)
eval_set_for_model = eval_set.remove_columns(["example_id", "offset_mapping"])
eval_set_for_model.set_format("torch")
batch = {k: eval_set_for_model[k].to(device) for k in eval_set_for_model.column_names}
outputs = model(**batch)
start_logits = outputs.start_logits.cpu().numpy()
end_logits = outputs.end_logits.cpu().numpy()
res = compute_metrics(start_logits, end_logits, eval_set, small_eval_set)
exact_match += res['exact_match'] * (len(small_eval_set) / len(test_validation))
f1 += res["f1"] * (len(small_eval_set) / len(test_validation))
start += validation_size
end += validation_size
print("F1 score: {}".format(f1))
print("Exact match: {}".format(exact_match))
with open(out, "a+") as file:
file.write("Model: {}, Question: {}, Size: {}".format(model_list[j], question, len(test_validation)))
file.write("\n")
file.write("F1 score: {}".format(f1))
file.write("\n")
file.write("Exact match: {}".format(exact_match))
file.write("\n")
# LUKE
# F1 score: 92.4
# EM: 85.9
# XLNET
# F1 score: 91.54154256653278
# Exact match: 84.86666666666666
# SpanBERT
# F1 score: 92.160285362531
# Exact match: 85.73333333333333
# LUKE SQUADSHIFT (SQUAD then SQUADSHIFT)
# F1 score: 91.27683543983473
# Exact match: 84.96190476190473
# LUKE SQUAD on WHO question only
# F1 score: 95.10756796200876
# Exact match: 92.03125
# LUKE SQUAD on WHICH question only
# F1 score: 92.40873428373428
# Exact match: 87.43243243243242
# LUKE SQUAD on WHAT question only
# F1 score: 92.09871080377772
# Exact match: 85.56105610561056
# LUKE SQUAD on WHERE question only
# F1 score: 90.1197551009935
# Exact match: 82.8
# LUKE SQUAD on HOW question only
# F1 score: 91.29310175269578
# Exact match: 82.09677419354838 |