Delete LukeQuestionAnswering.py
Browse files- LukeQuestionAnswering.py +0 -431
LukeQuestionAnswering.py
DELETED
@@ -1,431 +0,0 @@
|
|
1 |
-
from transformers import LukePreTrainedModel, LukeModel, AutoTokenizer, TrainingArguments, default_data_collator, Trainer, LukeForQuestionAnswering
|
2 |
-
from transformers.modeling_outputs import ModelOutput
|
3 |
-
from typing import Optional, Tuple, Union
|
4 |
-
|
5 |
-
import numpy as np
|
6 |
-
from tqdm import tqdm
|
7 |
-
import evaluate
|
8 |
-
import torch
|
9 |
-
from dataclasses import dataclass
|
10 |
-
from datasets import load_dataset
|
11 |
-
from torch import nn
|
12 |
-
from torch.nn import CrossEntropyLoss
|
13 |
-
import collections
|
14 |
-
|
15 |
-
PEFT = False
|
16 |
-
repo_name = "LUKE_squad_finetuned_qa"
|
17 |
-
tf32 = True
|
18 |
-
fp16= True
|
19 |
-
train = False
|
20 |
-
test = True
|
21 |
-
trained_model = "LUKE_squad_finetuned_qa_tf32"
|
22 |
-
|
23 |
-
torch.backends.cuda.matmul.allow_tf32 = tf32
|
24 |
-
torch.backends.cudnn.allow_tf32 = tf32
|
25 |
-
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
26 |
-
|
27 |
-
if tf32:
|
28 |
-
repo_name += "_tf32"
|
29 |
-
|
30 |
-
# https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/luke/modeling_luke.py#L319-L353
|
31 |
-
# Taken from HF repository, easier to include additional features -- Currently identical to LukeForQuestionAnswering by HF
|
32 |
-
|
33 |
-
@dataclass
|
34 |
-
class LukeQuestionAnsweringModelOutput(ModelOutput):
|
35 |
-
"""
|
36 |
-
Outputs of question answering models.
|
37 |
-
|
38 |
-
|
39 |
-
Args:
|
40 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
41 |
-
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
|
42 |
-
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
43 |
-
Span-start scores (before SoftMax).
|
44 |
-
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
|
45 |
-
Span-end scores (before SoftMax).
|
46 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
47 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
48 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
49 |
-
|
50 |
-
|
51 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
52 |
-
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
53 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
54 |
-
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
|
55 |
-
layer plus the initial entity embedding outputs.
|
56 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
57 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
58 |
-
sequence_length)`.
|
59 |
-
|
60 |
-
|
61 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
62 |
-
heads.
|
63 |
-
"""
|
64 |
-
|
65 |
-
|
66 |
-
loss: Optional[torch.FloatTensor] = None
|
67 |
-
start_logits: torch.FloatTensor = None
|
68 |
-
end_logits: torch.FloatTensor = None
|
69 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
70 |
-
entity_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
71 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
72 |
-
|
73 |
-
class AugmentedLukeForQuestionAnswering(LukePreTrainedModel):
|
74 |
-
def __init__(self, config):
|
75 |
-
super().__init__(config)
|
76 |
-
|
77 |
-
# This is 2.
|
78 |
-
self.num_labels = config.num_labels
|
79 |
-
|
80 |
-
self.luke = LukeModel(config, add_pooling_layer=False)
|
81 |
-
|
82 |
-
'''
|
83 |
-
Any improvement to the model are expected here. Additional features, anything...
|
84 |
-
'''
|
85 |
-
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
86 |
-
|
87 |
-
|
88 |
-
# Initialize weights and apply final processing
|
89 |
-
self.post_init()
|
90 |
-
|
91 |
-
def forward(
|
92 |
-
self,
|
93 |
-
input_ids: Optional[torch.LongTensor] = None,
|
94 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
95 |
-
token_type_ids: Optional[torch.LongTensor] = None,
|
96 |
-
position_ids: Optional[torch.FloatTensor] = None,
|
97 |
-
entity_ids: Optional[torch.LongTensor] = None,
|
98 |
-
entity_attention_mask: Optional[torch.FloatTensor] = None,
|
99 |
-
entity_token_type_ids: Optional[torch.LongTensor] = None,
|
100 |
-
entity_position_ids: Optional[torch.LongTensor] = None,
|
101 |
-
head_mask: Optional[torch.FloatTensor] = None,
|
102 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
103 |
-
start_positions: Optional[torch.LongTensor] = None,
|
104 |
-
end_positions: Optional[torch.LongTensor] = None,
|
105 |
-
output_attentions: Optional[bool] = None,
|
106 |
-
output_hidden_states: Optional[bool] = None,
|
107 |
-
return_dict: Optional[bool] = None,
|
108 |
-
) -> Union[Tuple, LukeQuestionAnsweringModelOutput]:
|
109 |
-
|
110 |
-
r"""
|
111 |
-
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
112 |
-
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
113 |
-
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
114 |
-
are not taken into account for computing the loss.
|
115 |
-
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
116 |
-
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
117 |
-
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
118 |
-
are not taken into account for computing the loss.
|
119 |
-
"""
|
120 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
121 |
-
|
122 |
-
|
123 |
-
outputs = self.luke(
|
124 |
-
input_ids=input_ids,
|
125 |
-
attention_mask=attention_mask,
|
126 |
-
token_type_ids=token_type_ids,
|
127 |
-
position_ids=position_ids,
|
128 |
-
entity_ids=entity_ids,
|
129 |
-
entity_attention_mask=entity_attention_mask,
|
130 |
-
entity_token_type_ids=entity_token_type_ids,
|
131 |
-
entity_position_ids=entity_position_ids,
|
132 |
-
head_mask=head_mask,
|
133 |
-
inputs_embeds=inputs_embeds,
|
134 |
-
output_attentions=output_attentions,
|
135 |
-
output_hidden_states=output_hidden_states,
|
136 |
-
return_dict=True,
|
137 |
-
)
|
138 |
-
|
139 |
-
|
140 |
-
sequence_output = outputs.last_hidden_state
|
141 |
-
|
142 |
-
|
143 |
-
logits = self.qa_outputs(sequence_output)
|
144 |
-
start_logits, end_logits = logits.split(1, dim=-1)
|
145 |
-
start_logits = start_logits.squeeze(-1)
|
146 |
-
end_logits = end_logits.squeeze(-1)
|
147 |
-
|
148 |
-
|
149 |
-
total_loss = None
|
150 |
-
if start_positions is not None and end_positions is not None:
|
151 |
-
# If we are on multi-GPU, split add a dimension
|
152 |
-
if len(start_positions.size()) > 1:
|
153 |
-
start_positions = start_positions.squeeze(-1)
|
154 |
-
if len(end_positions.size()) > 1:
|
155 |
-
end_positions = end_positions.squeeze(-1)
|
156 |
-
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
157 |
-
ignored_index = start_logits.size(1)
|
158 |
-
start_positions.clamp_(0, ignored_index)
|
159 |
-
end_positions.clamp_(0, ignored_index)
|
160 |
-
|
161 |
-
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
162 |
-
start_loss = loss_fct(start_logits, start_positions)
|
163 |
-
end_loss = loss_fct(end_logits, end_positions)
|
164 |
-
total_loss = (start_loss + end_loss) / 2
|
165 |
-
|
166 |
-
|
167 |
-
if not return_dict:
|
168 |
-
return tuple(
|
169 |
-
v
|
170 |
-
for v in [
|
171 |
-
total_loss,
|
172 |
-
start_logits,
|
173 |
-
end_logits,
|
174 |
-
outputs.hidden_states,
|
175 |
-
outputs.entity_hidden_states,
|
176 |
-
outputs.attentions,
|
177 |
-
]
|
178 |
-
if v is not None
|
179 |
-
)
|
180 |
-
|
181 |
-
|
182 |
-
return LukeQuestionAnsweringModelOutput(
|
183 |
-
loss=total_loss,
|
184 |
-
start_logits=start_logits,
|
185 |
-
end_logits=end_logits,
|
186 |
-
hidden_states=outputs.hidden_states,
|
187 |
-
entity_hidden_states=outputs.entity_hidden_states,
|
188 |
-
attentions=outputs.attentions,
|
189 |
-
)
|
190 |
-
|
191 |
-
if __name__ == "__main__":
|
192 |
-
# Setting up tokenizer and helper functions
|
193 |
-
# Work-around for FastTokenizer - RoBERTa and LUKE share the same subword vocab, and we are not using entities functions of LUKE-tokenizer anyways
|
194 |
-
tokenizer = AutoTokenizer.from_pretrained("roberta-base")
|
195 |
-
|
196 |
-
# Necessary initialization
|
197 |
-
max_length = 384
|
198 |
-
stride = 128
|
199 |
-
batch_size = 8
|
200 |
-
n_best = 20
|
201 |
-
max_answer_length = 30
|
202 |
-
metric = evaluate.load("squad")
|
203 |
-
raw_datasets = load_dataset("squad")
|
204 |
-
|
205 |
-
def compute_metrics(start_logits, end_logits, features, examples):
|
206 |
-
example_to_features = collections.defaultdict(list)
|
207 |
-
for idx, feature in enumerate(features):
|
208 |
-
example_to_features[feature["example_id"]].append(idx)
|
209 |
-
|
210 |
-
predicted_answers = []
|
211 |
-
for example in tqdm(examples):
|
212 |
-
example_id = example["id"]
|
213 |
-
context = example["context"]
|
214 |
-
answers = []
|
215 |
-
|
216 |
-
# Loop through all features associated with that example
|
217 |
-
for feature_index in example_to_features[example_id]:
|
218 |
-
start_logit = start_logits[feature_index]
|
219 |
-
end_logit = end_logits[feature_index]
|
220 |
-
offsets = features[feature_index]["offset_mapping"]
|
221 |
-
|
222 |
-
start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist()
|
223 |
-
end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist()
|
224 |
-
for start_index in start_indexes:
|
225 |
-
for end_index in end_indexes:
|
226 |
-
# Skip answers that are not fully in the context
|
227 |
-
if offsets[start_index] is None or offsets[end_index] is None:
|
228 |
-
continue
|
229 |
-
# Skip answers with a length that is either < 0 or > max_answer_length
|
230 |
-
if (
|
231 |
-
end_index < start_index
|
232 |
-
or end_index - start_index + 1 > max_answer_length
|
233 |
-
):
|
234 |
-
continue
|
235 |
-
|
236 |
-
answer = {
|
237 |
-
"text": context[offsets[start_index][0] : offsets[end_index][1]],
|
238 |
-
"logit_score": start_logit[start_index] + end_logit[end_index],
|
239 |
-
}
|
240 |
-
answers.append(answer)
|
241 |
-
|
242 |
-
# Select the answer with the best score
|
243 |
-
if len(answers) > 0:
|
244 |
-
best_answer = max(answers, key=lambda x: x["logit_score"])
|
245 |
-
predicted_answers.append(
|
246 |
-
{"id": example_id, "prediction_text": best_answer["text"]}
|
247 |
-
)
|
248 |
-
else:
|
249 |
-
predicted_answers.append({"id": example_id, "prediction_text": ""})
|
250 |
-
|
251 |
-
theoretical_answers = [{"id": ex["id"], "answers": ex["answers"]} for ex in examples]
|
252 |
-
return metric.compute(predictions=predicted_answers, references=theoretical_answers)
|
253 |
-
|
254 |
-
def preprocess_training_examples(examples):
|
255 |
-
|
256 |
-
questions = [q.strip() for q in examples["question"]]
|
257 |
-
inputs = tokenizer(
|
258 |
-
questions,
|
259 |
-
examples["context"],
|
260 |
-
max_length=max_length,
|
261 |
-
truncation="only_second",
|
262 |
-
stride=stride,
|
263 |
-
return_overflowing_tokens=True,
|
264 |
-
return_offsets_mapping=True,
|
265 |
-
padding="max_length",
|
266 |
-
)
|
267 |
-
|
268 |
-
offset_mapping = inputs.pop("offset_mapping")
|
269 |
-
sample_map = inputs.pop("overflow_to_sample_mapping")
|
270 |
-
answers = examples["answers"]
|
271 |
-
start_positions = []
|
272 |
-
end_positions = []
|
273 |
-
|
274 |
-
for i, offset in enumerate(offset_mapping):
|
275 |
-
sample_idx = sample_map[i]
|
276 |
-
answer = answers[sample_idx]
|
277 |
-
start_char = answer["answer_start"][0]
|
278 |
-
end_char = answer["answer_start"][0] + len(answer["text"][0])
|
279 |
-
sequence_ids = inputs.sequence_ids(i)
|
280 |
-
|
281 |
-
# Find the start and end of the context
|
282 |
-
idx = 0
|
283 |
-
while sequence_ids[idx] != 1:
|
284 |
-
idx += 1
|
285 |
-
context_start = idx
|
286 |
-
while sequence_ids[idx] == 1:
|
287 |
-
idx += 1
|
288 |
-
context_end = idx - 1
|
289 |
-
|
290 |
-
# If the answer is not fully inside the context, label is (0, 0)
|
291 |
-
if offset[context_start][0] > start_char or offset[context_end][1] < end_char:
|
292 |
-
start_positions.append(0)
|
293 |
-
end_positions.append(0)
|
294 |
-
else:
|
295 |
-
# Otherwise it's the start and end token positions
|
296 |
-
idx = context_start
|
297 |
-
while idx <= context_end and offset[idx][0] <= start_char:
|
298 |
-
idx += 1
|
299 |
-
start_positions.append(idx - 1)
|
300 |
-
|
301 |
-
idx = context_end
|
302 |
-
while idx >= context_start and offset[idx][1] >= end_char:
|
303 |
-
idx -= 1
|
304 |
-
end_positions.append(idx + 1)
|
305 |
-
|
306 |
-
inputs["start_positions"] = start_positions
|
307 |
-
inputs["end_positions"] = end_positions
|
308 |
-
return inputs
|
309 |
-
|
310 |
-
def preprocess_validation_examples(examples):
|
311 |
-
questions = [q.strip() for q in examples["question"]]
|
312 |
-
inputs = tokenizer(
|
313 |
-
questions,
|
314 |
-
examples["context"],
|
315 |
-
max_length=max_length,
|
316 |
-
truncation="only_second",
|
317 |
-
stride=stride,
|
318 |
-
return_overflowing_tokens=True,
|
319 |
-
return_offsets_mapping=True,
|
320 |
-
padding="max_length",
|
321 |
-
)
|
322 |
-
|
323 |
-
|
324 |
-
sample_map = inputs.pop("overflow_to_sample_mapping")
|
325 |
-
example_ids = []
|
326 |
-
|
327 |
-
for i in range(len(inputs["input_ids"])):
|
328 |
-
sample_idx = sample_map[i]
|
329 |
-
example_ids.append(examples["id"][sample_idx])
|
330 |
-
|
331 |
-
sequence_ids = inputs.sequence_ids(i)
|
332 |
-
offset = inputs["offset_mapping"][i]
|
333 |
-
inputs["offset_mapping"][i] = [
|
334 |
-
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
|
335 |
-
]
|
336 |
-
|
337 |
-
inputs["example_id"] = example_ids
|
338 |
-
return inputs
|
339 |
-
|
340 |
-
if train:
|
341 |
-
base_luke = "studio-ousia/luke-base"
|
342 |
-
|
343 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
344 |
-
model = AugmentedLukeForQuestionAnswering.from_pretrained(base_luke).to(device)
|
345 |
-
|
346 |
-
train_dataset = raw_datasets["train"].map(
|
347 |
-
preprocess_training_examples,
|
348 |
-
batched=True,
|
349 |
-
remove_columns=raw_datasets["train"].column_names,
|
350 |
-
)
|
351 |
-
|
352 |
-
validation_dataset = raw_datasets["validation"].map(
|
353 |
-
preprocess_validation_examples,
|
354 |
-
batched=True,
|
355 |
-
remove_columns=raw_datasets["validation"].column_names,
|
356 |
-
)
|
357 |
-
|
358 |
-
# --------------- PEFT -------------------- # One epoch without PEFT took about 2h on my computer with CUDA - performance of PEFT kinda ass though
|
359 |
-
if PEFT:
|
360 |
-
from peft import get_peft_config, get_peft_model, LoraConfig, TaskType
|
361 |
-
|
362 |
-
# ---- For all linear layers ----
|
363 |
-
import re
|
364 |
-
pattern = r'\((\w+)\): Linear'
|
365 |
-
linear_layers = re.findall(pattern, str(model.modules))
|
366 |
-
target_modules = list(set(linear_layers))
|
367 |
-
|
368 |
-
# If using peft, can consider increaisng r for better performance
|
369 |
-
peft_config = LoraConfig(
|
370 |
-
task_type=TaskType.QUESTION_ANS, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1, target_modules=target_modules, bias='all'
|
371 |
-
)
|
372 |
-
|
373 |
-
model = get_peft_model(model, peft_config)
|
374 |
-
model.print_trainable_parameters()
|
375 |
-
|
376 |
-
repo_name += "_PEFT"
|
377 |
-
|
378 |
-
# ------------------------------------------ #
|
379 |
-
|
380 |
-
args = TrainingArguments(
|
381 |
-
repo_name,
|
382 |
-
evaluation_strategy = "no",
|
383 |
-
save_strategy="epoch",
|
384 |
-
learning_rate=2e-5,
|
385 |
-
per_device_train_batch_size=batch_size,
|
386 |
-
per_device_eval_batch_size=batch_size,
|
387 |
-
num_train_epochs=3,
|
388 |
-
weight_decay=0.01,
|
389 |
-
push_to_hub=True,
|
390 |
-
fp16=fp16
|
391 |
-
)
|
392 |
-
|
393 |
-
trainer = Trainer(
|
394 |
-
model,
|
395 |
-
args,
|
396 |
-
train_dataset=train_dataset,
|
397 |
-
eval_dataset=validation_dataset,
|
398 |
-
data_collator=default_data_collator,
|
399 |
-
tokenizer=tokenizer
|
400 |
-
)
|
401 |
-
|
402 |
-
trainer.train()
|
403 |
-
|
404 |
-
elif test:
|
405 |
-
model = AugmentedLukeForQuestionAnswering.from_pretrained(trained_model).to(device)
|
406 |
-
|
407 |
-
interval = len(raw_datasets["validation"]) // 100
|
408 |
-
exact_match = 0
|
409 |
-
f1 = 0
|
410 |
-
|
411 |
-
with torch.no_grad():
|
412 |
-
for i in range(1, 101):
|
413 |
-
start = interval * (i - 1)
|
414 |
-
end = interval * i
|
415 |
-
small_eval_set = raw_datasets["validation"].select(range(start ,end))
|
416 |
-
eval_set = small_eval_set.map(
|
417 |
-
preprocess_validation_examples,
|
418 |
-
batched=True,
|
419 |
-
remove_columns=raw_datasets["validation"].column_names
|
420 |
-
)
|
421 |
-
eval_set_for_model = eval_set.remove_columns(["example_id", "offset_mapping"])
|
422 |
-
eval_set_for_model.set_format("torch")
|
423 |
-
batch = {k: eval_set_for_model[k].to(device) for k in eval_set_for_model.column_names}
|
424 |
-
outputs = model(**batch)
|
425 |
-
start_logits = outputs.start_logits.cpu().numpy()
|
426 |
-
end_logits = outputs.end_logits.cpu().numpy()
|
427 |
-
res = compute_metrics(start_logits, end_logits, eval_set, small_eval_set)
|
428 |
-
exact_match += res['exact_match']
|
429 |
-
f1 += res["f1"]
|
430 |
-
print("F1 score: {}".format(f1 / 100))
|
431 |
-
print("Exact match: {}".format(exact_match / 100))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|