End of training
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Precision: 0.
|
25 |
-
- Recall: 0.
|
26 |
-
- F1: 0.
|
27 |
-
- Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -49,16 +49,19 @@ The following hyperparameters were used during training:
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
-
- num_epochs:
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
|
|
|
|
|
|
62 |
|
63 |
|
64 |
### Framework versions
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.6832
|
24 |
+
- Precision: 0.7473
|
25 |
+
- Recall: 0.7470
|
26 |
+
- F1: 0.7393
|
27 |
+
- Accuracy: 0.7470
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
49 |
- seed: 42
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 3
|
53 |
|
54 |
### Training results
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.9007 | 0.4016 | 100 | 0.8154 | 0.6926 | 0.6596 | 0.6202 | 0.6596 |
|
59 |
+
| 0.7915 | 0.8032 | 200 | 0.7602 | 0.7181 | 0.6867 | 0.6585 | 0.6867 |
|
60 |
+
| 0.7089 | 1.2048 | 300 | 0.6769 | 0.7323 | 0.7329 | 0.7250 | 0.7329 |
|
61 |
+
| 0.6381 | 1.6064 | 400 | 0.6954 | 0.7338 | 0.7329 | 0.7240 | 0.7329 |
|
62 |
+
| 0.6528 | 2.0080 | 500 | 0.6510 | 0.7423 | 0.7410 | 0.7318 | 0.7410 |
|
63 |
+
| 0.5652 | 2.4096 | 600 | 0.6856 | 0.7340 | 0.7339 | 0.7303 | 0.7339 |
|
64 |
+
| 0.5446 | 2.8112 | 700 | 0.6832 | 0.7473 | 0.7470 | 0.7393 | 0.7470 |
|
65 |
|
66 |
|
67 |
### Framework versions
|