File size: 64,740 Bytes
137a5fa 1d3016b 137a5fa 1d3016b 137a5fa 1d3016b 137a5fa 1d3016b 137a5fa 1d3016b 137a5fa 1d3016b 137a5fa 1d3016b 137a5fa 1d3016b 137a5fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 |
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:96781
- loss:MultipleNegativesRankingLoss
- loss:AnglELoss
- loss:GISTEmbedLoss
- loss:OnlineContrastiveLoss
- loss:MultipleNegativesSymmetricRankingLoss
base_model: microsoft/deberta-v3-small
datasets:
- sentence-transformers/all-nli
- sentence-transformers/stsb
- tals/vitaminc
- nyu-mll/glue
- allenai/scitail
- sentence-transformers/xsum
- sentence-transformers/sentence-compression
widget:
- source_sentence: What dual titles did Frederick William hold?
sentences:
- The impact was increased by chronic overfishing, and by eutrophication that gave
the entire ecosystem a short-term boost, causing the Mnemiopsis population to
increase even faster than normal – and above all by the absence of efficient predators
on these introduced ctenophores.
- The "European Council" (rather than the Council, made up of different government
Ministers) is composed of the Prime Ministers or executive Presidents of the member
states.
- Nearly 50,000 Huguenots established themselves in Germany, 20,000 of whom were
welcomed in Brandenburg-Prussia, where they were granted special privileges (Edict
of Potsdam) and churches in which to worship (such as the Church of St. Peter
and St. Paul, Angermünde) by Frederick William, Elector of Brandenburg and Duke
of Prussia.
- source_sentence: the Great Internet Mersenne Prime Search, what was the prize for
finding a prime with at least 10 million digits?
sentences:
- Since September 2004, the official home of the Scottish Parliament has been a
new Scottish Parliament Building, in the Holyrood area of Edinburgh.
- The roughly half-mile stretch of Kearney Boulevard between Fresno Street and Thorne
Ave was at one time the preferred neighborhood for Fresno's elite African-American
families.
- In 2009, the Great Internet Mersenne Prime Search project was awarded a US$100,000
prize for first discovering a prime with at least 10 million digits.
- source_sentence: A woman is tugging on a white sheet and laughing
sentences:
- there are children near the camera
- The person is amused.
- Fruit characters decorate this child's bib
- source_sentence: A hispanic fruit market with many different fruits and vegetables
in view on a city street with a man passing the store dressed in dark pants and
a hoodie.
sentences:
- A fruit market and a man
- Farmers preparing to feed their animals.
- The guys have guns.
- source_sentence: All the members of one particular species in a give area are called
a population.
sentences:
- The specialized study of the motion of objects that are atomic/subatomic in size
is called quantum mechanics.
- All the members of a species that live in the same area form a population.
- A(n) anaerobic organism does not need oxygen for growth and dies in its presence.
pipeline_tag: sentence-similarity
---
# SentenceTransformer based on microsoft/deberta-v3-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum) and [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) <!-- at revision a36c739020e01763fe789b4b85e2df55d6180012 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli)
- [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb)
- [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
- [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue)
- [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
- [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
- [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum)
- [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bobox/DeBERTaV3-small-GeneralSentenceTransformer-v2")
# Run inference
sentences = [
'All the members of one particular species in a give area are called a population.',
'All the members of a species that live in the same area form a population.',
'A(n) anaerobic organism does not need oxygen for growth and dies in its presence.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### nli-pairs
* Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 7,500 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------|:-------------------------------------------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> |
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> |
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### sts-label
* Dataset: [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 9.81 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.74 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_angle_sim"
}
```
#### vitaminc-pairs
* Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
* Size: 3,695 training samples
* Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:-----------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
| type | int | string | string |
| details | <ul><li>1: 100.00%</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.02 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 38.57 tokens</li><li>max: 502 tokens</li></ul> |
* Samples:
| label | sentence1 | sentence2 |
|:---------------|:------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>1</code> | <code>The movie Yevadu grossed more than 390 million globally .</code> | <code>It also took the second spot in the list of the top 10 films with highest first week shares from AP.The film collected 390.5 million in 9 days , and more than 60 million from other areas , including Karnataka , the rest of India , and overseas territories , enabling it to cross the 400 million mark at the worldwide Box office , becoming Ram Charan 's fourth film to cross that mark .</code> |
| <code>1</code> | <code>The film 's score is based on 33 critics .</code> | <code>`` Metacritic gave the film a score of 44 out of 100 , based on 33 critics , indicating `` '' mixed or average reviews '' '' . ''</code> |
| <code>1</code> | <code>Back to Black ( album ) sold less than 15 million copies .</code> | <code>Worldwide , the album has sold over 12 million copies .</code> |
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
```json
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.05}
```
#### qnli-contrastive
* Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 7,500 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.92 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 35.87 tokens</li><li>max: 499 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>Who was the biggest artist that CBS had?</code> | <code>CBS Inc., now CBS Corporation, retained the rights to the CBS name for music recordings but granted Sony a temporary license to use the CBS name.</code> | <code>0</code> |
| <code>What does a video-conference use that allows communication in live situations?</code> | <code>This is often accomplished by the use of a multipoint control unit (a centralized distribution and call management system) or by a similar non-centralized multipoint capability embedded in each videoconferencing unit.</code> | <code>0</code> |
| <code>What is the population of Saint Helena?</code> | <code>It is part of the British Overseas Territory of Saint Helena, Ascension and Tristan da Cunha.</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
#### scitail-pairs-qa
* Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 14,987 training samples
* Columns: <code>sentence2</code> and <code>sentence1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence2 | sentence1 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 15.86 tokens</li><li>max: 41 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.1 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence2 | sentence1 |
|:--------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| <code>The largest known proteins are titins.</code> | <code>What are the largest known proteins?</code> |
| <code>Remote-control vehicles are able to go to the deepest ocean floor.</code> | <code>What type of vehicles is able to go to the deepest ocean floor?</code> |
| <code>Vaccine is a preventative measure that is often delivered by injection into the arm.</code> | <code>What preventative measure is often delivered by injection into the arm?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 8,600 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 23.75 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.47 tokens</li><li>max: 41 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|
| <code>The movement of molecules from a location where they are in a high concentration to an area where they are in a lower concentration is called diffusion .</code> | <code>You call the movement of a substance from an area of a higher amount toward an area of lower amount diffusion.</code> |
| <code>Climate is the average weather of an area over a long period of time.</code> | <code>Climate is the long-term average of weather in a particular spot.</code> |
| <code>Sunlight is captured by green plants during the process of photosynthesis to produce glucose, a carbohydrate from water and carbon dioxide.</code> | <code>Photosynthesis converts carbon dioxide and water into glucose.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### xsum-pairs
* Dataset: [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum) at [788ddaf](https://huggingface.co/datasets/sentence-transformers/xsum/tree/788ddafe04e539956d56b567bc32a036ee7b9206)
* Size: 3,750 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 28 tokens</li><li>mean: 355.39 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 27.3 tokens</li><li>max: 61 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Prices rose in all council areas and across all property types, but there were wide variations.<br>In Derry City and Strabane prices were up by 11% but by less than 2% in Fermanagh and Omagh.<br>The figures are from the NI Residential Property Price Index, which analyses almost all sales, including cash deals.<br>The average standardised price, across all property types, is now £125,480.<br>That compares to £97,428 at the bottom of the market in 2012, but is still far below the bubble-era peak of £224,670.<br>Over the year the largest rise was in the apartment sector with prices up by 11%.<br>For all other property types, the increase was about 5%.<br>The council area with the highest average price is Lisburn and Castlereagh (£149,600) and the lowest is Derry City and Strabane (£108,464).<br>The number of properties sold in 2016 was 21,669, down slightly on the 2015 figure.<br>Northern Ireland experienced a huge house price bubble in the years leading up to 2007 before the market crashed.<br>Prices more than halved between 2007 and early 2013 but have been increasing gradually since then.</code> | <code>House prices in Northern Ireland rose by almost 6% in 2016, according to official figures.</code> |
| <code>English and French clubs intend to break away from the Heineken Cup and create their own tournament.<br>"It could well be the end of professional rugby in Scotland if the competition wasn't to go ahead," Nicol told BBC Scotland.<br>"I don't think you can fill a hole of that amount with anything else."<br>Let's get qualification sorted out and based on a meritocracy and then the distribution of revenues is for the boardrooms<br>The Scottish Rugby Union currently receives about £5m per year for Glasgow Warriors and Edinburgh's participation in the Heineken Cup.<br>European Rugby Cup (ERC), which has run the Heineken Cup since it began in 1995, wants to re-open negotiations about the tournament's future but English Premiership and French Top 14 clubs insist they will not attend talks planned by the organising body next month.<br>They will quit the competition at the end of the season, citing factors such as their view that the Heineken Cup structure favours teams from the Pro12, which is made up of sides from Wales, Scotland, Ireland and Italy, and distribution of revenue.<br>Nicol, who won the Heineken Cup with Bath in 1998, insists that arguments over the tournament format is a repetitive issue and he hopes "common sense" will prevail for the good of the game in Scotland.<br>"It happens every few years," he told BBC Scotland. "The English and the French flex their collective muscles when the contract is coming to an end.<br>"But this year, it's very different, because they've got a television deal on the table and it's a real clear and present danger.<br>"I think there's an acceptance that the current format of the Heineken Cup will cease and there will be a new competition.<br>Media playback is not supported on this device<br>"Then we just need to ensure and hope that Scotland are heavily involved in it."<br>Nicol conceded that the main stumbling block for advancing discussions was the perception that Celtic nations are favoured in the qualification process.<br>At present, Ireland and Wales each have three sides guaranteed a place, while Scotland and Italy have two apiece.<br>Nicol believes the English and French unions want to put a stop to automatic qualification, which could bring about the end of lucrative revenue for Glasgow and Edinburgh, although ending guaranteed entry may be necessary to ensure the future of a pan-European competition.<br>The former Scotland captain said if the tournament comes to an end it would be "a sporting disaster" adding that "the Heineken Cup has been a fantastic competition".<br>He added: "Where it's flawed is in the qualification. I don't think the two Scottish sides and the Italian sides or the Irish sides should qualify automatically.<br>"So let's get qualification sorted out and based on a meritocracy and then the distribution of revenues is for the boardrooms.<br>"There's a bit of posturing from both sides, but I just hope it's a bit of brinksmanship and they get around the table and sort something out - and we get a competition.<br>"It might not be the Heineken Cup as we call it now, but hopefully we'll get something like it."</code> | <code>Professional rugby union in Scotland could end if there is no European competition next season, fears former national captain Andy Nicol.</code> |
| <code>The German was 0.203 seconds quicker than Hamilton, with Ferrari's Kimi Raikkonen third, a second off the pace.<br>Mercedes set their times on the super-soft tyre, while Ferrari used the soft, which would account for about half the gap between the two cars.<br>Ferrari's Sebastian Vettel was fourth, ahead of Force India's Sergio Perez.<br>Hamilton enters the race nine points ahead of Rosberg in the championship after recovering from 21st on the grid to finish third at the Belgian Grand Prix last weekend, as Rosberg won.<br>Ferrari have used the last of their remaining engine development 'tokens' ahead of their home race in an attempt to boost their competitiveness after a slump in form that has seen them lose second place in the constructors' championship to Red Bull.<br>The fastest Red Bull was Max Verstappen in eighth, behind Haas driver Romain Grosjean and Williams' Valtteri Bottas, whose team-mate Felipe Massa announced on Thursday that he would retire at the end of the year.<br>Verstappen remains the focus of attention following his controversial battle with Raikkonen in Belgium.<br>Raikkonen has criticised Verstappen for being too dangerous, while the Dutchman said he would not change his driving because others were not happy.<br>The stewards took no action against Verstappen in Spa, but BBC Sport has learned that Charlie Whiting, the F1 director of governing body the FIA, felt that Verstappen's late move in defence at 200mph as Raikkonen attacked was on the edge of acceptability.<br>Whiting told the teams in a meeting on Thursday that he felt Verstappen could have received a black-and-white warning flag for his driving.<br>The black-and-white flag is an indication of unsportsmanlike behaviour and is only shown once. If the driver commits the same offence again he can be disqualified from the race.<br>Whiting's intervention raised the stakes in the debate ahead of the drivers' briefing after practice on Friday afternoon, where the incident is expected to be discussed.<br>It was a relatively low-key session on track, despite a number of drivers running off the track at the tricky Monza chicanes in the warm sunshine.<br>McLaren's session came to an unfortunate end as Fernando Alonso was forced to pit with a gearshift problem. He was 13th, with team-mate Jenson Button 11th, the drivers expecting their most difficult weekend of the year because of the lack of power of the Honda engine, which still lags despite recent updates.<br>Button and Verstappen ran the halo head protection system in the first part of the session as trials continue ahead of the planned introduction of the device in 2018.<br>Italian Grand Prix first practice results<br>Italian Grand Prix coverage details</code> | <code>Nico Rosberg headed team-mate Lewis Hamilton as Mercedes dominated first practice at the Italian Grand Prix.</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### compression-pairs
* Dataset: [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
* Size: 45,000 training samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 10 tokens</li><li>mean: 31.78 tokens</li><li>max: 170 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.14 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------|
| <code>The USHL completed an expansion draft on Monday as 10 players who were on the rosters of USHL teams during the 2009-10 season were selected by the League's two newest entries, the Muskegon Lumberjacks and Dubuque Fighting Saints.</code> | <code>USHL completes expansion draft</code> |
| <code>NRT LLC, one of the nation's largest residential real estate brokerage companies, announced several executive appointments within its Coldwell Banker Residential Brokerage operations in Southern California.</code> | <code>NRT announces executive appointments at its Coldwell Banker operations in Southern California</code> |
| <code>A new survey shows 30 percent of Californians use Twitter, and more and more of us are using our smart phones to go online.</code> | <code>Survey: 30 percent of Californians use Twitter</code> |
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Datasets
#### nli-pairs
* Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 2,000 evaluation samples
* Columns: <code>sentence1</code> and <code>sentence2</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 5 tokens</li><li>mean: 17.64 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.67 tokens</li><li>max: 29 tokens</li></ul> |
* Samples:
| sentence1 | sentence2 |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> |
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> |
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### scitail-pairs-pos
* Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
* Size: 1,304 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 5 tokens</li><li>mean: 22.52 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.34 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>0: ~47.50%</li><li>1: ~52.50%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:----------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
| <code>An introduction to atoms and elements, compounds, atomic structure and bonding, the molecule and chemical reactions.</code> | <code>Replace another in a molecule happens to atoms during a substitution reaction.</code> | <code>0</code> |
| <code>Wavelength The distance between two consecutive points on a sinusoidal wave that are in phase;</code> | <code>Wavelength is the distance between two corresponding points of adjacent waves called.</code> | <code>1</code> |
| <code>humans normally have 23 pairs of chromosomes.</code> | <code>Humans typically have 23 pairs pairs of chromosomes.</code> | <code>1</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### qnli-contrastive
* Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
* Size: 2,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 14.13 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 36.58 tokens</li><li>max: 225 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
| <code>What came into force after the new constitution was herald?</code> | <code>As of that day, the new constitution heralding the Second Republic came into force.</code> | <code>0</code> |
| <code>What is the first major city in the stream of the Rhine?</code> | <code>The most important tributaries in this area are the Ill below of Strasbourg, the Neckar in Mannheim and the Main across from Mainz.</code> | <code>0</code> |
| <code>What is the minimum required if you want to teach in Canada?</code> | <code>In most provinces a second Bachelor's Degree such as a Bachelor of Education is required to become a qualified teacher.</code> | <code>0</code> |
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
#### sts-label
* Dataset: [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 14.77 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.74 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | score |
|:--------------------------------------------------|:------------------------------------------------------|:------------------|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
* Loss: [<code>AnglELoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#angleloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "pairwise_angle_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 28
- `per_device_eval_batch_size`: 16
- `learning_rate`: 3e-06
- `weight_decay`: 1e-10
- `num_train_epochs`: 5
- `max_steps`: 5000
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.33
- `save_safetensors`: False
- `fp16`: True
- `hub_model_id`: bobox/DeBERTaV3-small-ST-checkpoints-tmp
- `hub_strategy`: checkpoint
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 28
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-06
- `weight_decay`: 1e-10
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: 5000
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.33
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: False
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: bobox/DeBERTaV3-small-ST-checkpoints-tmp
- `hub_strategy`: checkpoint
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | nli-pairs loss | sts-label loss | scitail-pairs-pos loss | qnli-contrastive loss |
|:------:|:----:|:-------------:|:--------------:|:--------------:|:----------------------:|:---------------------:|
| None | 0 | - | 3.3906 | 6.4037 | 2.3949 | 2.6789 |
| 0.0723 | 250 | 3.2471 | 3.2669 | 6.3326 | 2.3286 | 2.6008 |
| 0.1445 | 500 | 3.051 | 3.0717 | 6.5578 | 2.0277 | 2.0795 |
| 0.2168 | 750 | 2.3717 | 2.8445 | 7.5564 | 1.5729 | 1.1601 |
| 0.2890 | 1000 | 1.5228 | 2.5520 | 8.3864 | 1.1221 | 0.7480 |
| 0.3613 | 1250 | 1.5747 | 2.1439 | 8.7993 | 0.9512 | 0.5071 |
| 0.4335 | 1500 | 1.2114 | 1.7986 | 9.0748 | 0.8195 | 0.3715 |
| 0.5058 | 1750 | 1.1832 | 1.5665 | 9.1778 | 0.6956 | 0.2920 |
| 0.5780 | 2000 | 0.9078 | 1.4173 | 9.3829 | 0.6840 | 0.2488 |
| 0.6503 | 2250 | 0.8436 | 1.3196 | 9.4585 | 0.6831 | 0.1584 |
| 0.7225 | 2500 | 0.8744 | 1.2192 | 9.5395 | 0.6232 | 0.1527 |
| 0.7948 | 2750 | 1.1809 | 1.1600 | 9.4297 | 0.5681 | 0.1369 |
| 0.8671 | 3000 | 0.7233 | 1.1149 | 9.4893 | 0.5523 | 0.1614 |
| 0.9393 | 3250 | 0.7862 | 1.0738 | 9.5408 | 0.5372 | 0.1291 |
| 1.0116 | 3500 | 1.0888 | 1.0328 | 9.5612 | 0.5286 | 0.1281 |
| 1.0838 | 3750 | 0.8116 | 1.0304 | 9.4794 | 0.5239 | 0.1144 |
| 1.1561 | 4000 | 1.0436 | 1.0215 | 9.4184 | 0.5278 | 0.0973 |
| 1.2283 | 4250 | 0.9298 | 1.0107 | 9.4322 | 0.5221 | 0.0970 |
| 1.3006 | 4500 | 0.682 | 1.0093 | 9.4643 | 0.5186 | 0.0951 |
| 1.3728 | 4750 | 0.9863 | 1.0080 | 9.4627 | 0.5176 | 0.0948 |
| 1.4451 | 5000 | 1.0022 | 1.0076 | 9.4645 | 0.5179 | 0.0945 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### AnglELoss
```bibtex
@misc{li2023angleoptimized,
title={AnglE-optimized Text Embeddings},
author={Xianming Li and Jing Li},
year={2023},
eprint={2309.12871},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### GISTEmbedLoss
```bibtex
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |