bobox commited on
Commit
84bcf76
·
verified ·
1 Parent(s): ea70c94

Training in progress, epoch 1, checkpoint

Browse files
last-checkpoint/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
last-checkpoint/README.md ADDED
@@ -0,0 +1,630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:689221
11
+ - loss:MultipleNegativesRankingLoss
12
+ - loss:CoSENTLoss
13
+ - loss:GISTEmbedLoss
14
+ - loss:OnlineContrastiveLoss
15
+ - loss:MultipleNegativesSymmetricRankingLoss
16
+ base_model: bobox/DeBERTaV3-small-GeneralSentenceTransformer
17
+ datasets:
18
+ - sentence-transformers/all-nli
19
+ - sentence-transformers/stsb
20
+ - tals/vitaminc
21
+ - nyu-mll/glue
22
+ - allenai/scitail
23
+ - sentence-transformers/xsum
24
+ - sentence-transformers/sentence-compression
25
+ widget:
26
+ - source_sentence: A man in a Santa Claus costume is sitting on a wooden chair holding
27
+ a microphone and a stringed instrument.
28
+ sentences:
29
+ - The man is is near the ball.
30
+ - The man is wearing a costume.
31
+ - People are having a picnic.
32
+ - source_sentence: A street vendor selling his art.
33
+ sentences:
34
+ - A man is selling things on the street.
35
+ - A woman is walking outside.
36
+ - A clown is talking into a microphone.
37
+ - source_sentence: A boy looks surly as his father looks at the camera.
38
+ sentences:
39
+ - a boy looks at his farther
40
+ - A dark-haired girl in a spotted shirt is pointing at the picture while sitting
41
+ next to a boy wearing a purple shirt and jeans.
42
+ - Man and woman stop and chat with each other.
43
+ - source_sentence: Which company provided streetcar connections between downtown and
44
+ the hospital?
45
+ sentences:
46
+ - In 1914 developers Billings & Meyering acquired the tract, completed street development,
47
+ provided the last of the necessary municipal improvements including water service,
48
+ and began marketing the property with fervor.
49
+ - The war was fought primarily along the frontiers between New France and the British
50
+ colonies, from Virginia in the South to Nova Scotia in the North.
51
+ - 'On the basis of CST, Burnet developed a theory of how an immune response is triggered
52
+ according to the self/nonself distinction: "self" constituents (constituents of
53
+ the body) do not trigger destructive immune responses, while "nonself" entities
54
+ (pathogens, an allograft) trigger a destructive immune response.'
55
+ - source_sentence: What language did Tesla study while in school?
56
+ sentences:
57
+ - Because of the complexity of medications including specific indications, effectiveness
58
+ of treatment regimens, safety of medications (i.e., drug interactions) and patient
59
+ compliance issues (in the hospital and at home) many pharmacists practicing in
60
+ hospitals gain more education and training after pharmacy school through a pharmacy
61
+ practice residency and sometimes followed by another residency in a specific area.
62
+ - Rev. Jimmy Creech was defrocked after a highly publicized church trial in 1999
63
+ on account of his participation in same-sex union ceremonies.
64
+ - Tesla was the fourth of five children.
65
+ pipeline_tag: sentence-similarity
66
+ ---
67
+
68
+ # SentenceTransformer based on bobox/DeBERTaV3-small-GeneralSentenceTransformer
69
+
70
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bobox/DeBERTaV3-small-GeneralSentenceTransformer](https://huggingface.co/bobox/DeBERTaV3-small-GeneralSentenceTransformer) on the [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli), [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb), [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc), [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue), [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail), [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail), [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum) and [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
71
+
72
+ ## Model Details
73
+
74
+ ### Model Description
75
+ - **Model Type:** Sentence Transformer
76
+ - **Base model:** [bobox/DeBERTaV3-small-GeneralSentenceTransformer](https://huggingface.co/bobox/DeBERTaV3-small-GeneralSentenceTransformer) <!-- at revision 2a8f28a3e07d490918a6b6668cff3b2215ac4273 -->
77
+ - **Maximum Sequence Length:** 512 tokens
78
+ - **Output Dimensionality:** 768 tokens
79
+ - **Similarity Function:** Cosine Similarity
80
+ - **Training Datasets:**
81
+ - [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli)
82
+ - [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb)
83
+ - [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc)
84
+ - [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue)
85
+ - [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail)
86
+ - [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail)
87
+ - [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum)
88
+ - [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
89
+ - **Language:** en
90
+ <!-- - **License:** Unknown -->
91
+
92
+ ### Model Sources
93
+
94
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
95
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
96
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
97
+
98
+ ### Full Model Architecture
99
+
100
+ ```
101
+ SentenceTransformer(
102
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model
103
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
104
+ )
105
+ ```
106
+
107
+ ## Usage
108
+
109
+ ### Direct Usage (Sentence Transformers)
110
+
111
+ First install the Sentence Transformers library:
112
+
113
+ ```bash
114
+ pip install -U sentence-transformers
115
+ ```
116
+
117
+ Then you can load this model and run inference.
118
+ ```python
119
+ from sentence_transformers import SentenceTransformer
120
+
121
+ # Download from the 🤗 Hub
122
+ model = SentenceTransformer("bobox/DeBERTaV3-small-GeneralSentenceTransformer-keepTraining-checkpoints-tmp")
123
+ # Run inference
124
+ sentences = [
125
+ 'What language did Tesla study while in school?',
126
+ 'Tesla was the fourth of five children.',
127
+ 'Rev. Jimmy Creech was defrocked after a highly publicized church trial in 1999 on account of his participation in same-sex union ceremonies.',
128
+ ]
129
+ embeddings = model.encode(sentences)
130
+ print(embeddings.shape)
131
+ # [3, 768]
132
+
133
+ # Get the similarity scores for the embeddings
134
+ similarities = model.similarity(embeddings, embeddings)
135
+ print(similarities.shape)
136
+ # [3, 3]
137
+ ```
138
+
139
+ <!--
140
+ ### Direct Usage (Transformers)
141
+
142
+ <details><summary>Click to see the direct usage in Transformers</summary>
143
+
144
+ </details>
145
+ -->
146
+
147
+ <!--
148
+ ### Downstream Usage (Sentence Transformers)
149
+
150
+ You can finetune this model on your own dataset.
151
+
152
+ <details><summary>Click to expand</summary>
153
+
154
+ </details>
155
+ -->
156
+
157
+ <!--
158
+ ### Out-of-Scope Use
159
+
160
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
161
+ -->
162
+
163
+ <!--
164
+ ## Bias, Risks and Limitations
165
+
166
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
167
+ -->
168
+
169
+ <!--
170
+ ### Recommendations
171
+
172
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
173
+ -->
174
+
175
+ ## Training Details
176
+
177
+ ### Training Datasets
178
+
179
+ #### nli-pairs
180
+
181
+ * Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
182
+ * Size: 150,000 training samples
183
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
184
+ * Approximate statistics based on the first 1000 samples:
185
+ | | sentence1 | sentence2 |
186
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
187
+ | type | string | string |
188
+ | details | <ul><li>min: 5 tokens</li><li>mean: 16.62 tokens</li><li>max: 62 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.46 tokens</li><li>max: 29 tokens</li></ul> |
189
+ * Samples:
190
+ | sentence1 | sentence2 |
191
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|
192
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> |
193
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> |
194
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> |
195
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
196
+ ```json
197
+ {
198
+ "scale": 20.0,
199
+ "similarity_fct": "cos_sim"
200
+ }
201
+ ```
202
+
203
+ #### sts-label
204
+
205
+ * Dataset: [sts-label](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
206
+ * Size: 5,749 training samples
207
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
208
+ * Approximate statistics based on the first 1000 samples:
209
+ | | sentence1 | sentence2 | score |
210
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
211
+ | type | string | string | float |
212
+ | details | <ul><li>min: 6 tokens</li><li>mean: 9.81 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.74 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
213
+ * Samples:
214
+ | sentence1 | sentence2 | score |
215
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
216
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
217
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
218
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
219
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
220
+ ```json
221
+ {
222
+ "scale": 20.0,
223
+ "similarity_fct": "pairwise_cos_sim"
224
+ }
225
+ ```
226
+
227
+ #### vitaminc-pairs
228
+
229
+ * Dataset: [vitaminc-pairs](https://huggingface.co/datasets/tals/vitaminc) at [be6febb](https://huggingface.co/datasets/tals/vitaminc/tree/be6febb761b0b2807687e61e0b5282e459df2fa0)
230
+ * Size: 75,142 training samples
231
+ * Columns: <code>label</code>, <code>sentence1</code>, and <code>sentence2</code>
232
+ * Approximate statistics based on the first 1000 samples:
233
+ | | label | sentence1 | sentence2 |
234
+ |:--------|:-----------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
235
+ | type | int | string | string |
236
+ | details | <ul><li>1: 100.00%</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.36 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 37.74 tokens</li><li>max: 224 tokens</li></ul> |
237
+ * Samples:
238
+ | label | sentence1 | sentence2 |
239
+ |:---------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
240
+ | <code>1</code> | <code>Baron Waddington was the Home Secretary during the Poll Tax Riots .</code> | <code>Baron Waddington of Read ( Home Secretary during the Poll Tax Riots and former Lord Privy Seal and Leader of the House of Lords ) , Phil Willis , Liberal Democrat MP for Harrogate & Knaresborough , Liberal Democrats official site .</code> |
241
+ | <code>1</code> | <code>Captopril inhibits the catabolism of endogenous opioids and this contributes to its hypotensive action , while naloxone , a mu -opiate antagonist , opposes this .</code> | <code>Captopril inhibits the catabolism of endogenous opioids and this contributes to its hypotensive action , and naloxone a mu -opiate antagonist , opposes this ( 7 ) Goldfrank 's toxicologic emergencies , Lewis R. Goldfrank , Neal Flomenbaum , page 953.Meyler 's Side Effects of Analgesics and Anti-inflammatory Drugs , Jeffrey K. Aronson , page 120.</code> |
242
+ | <code>1</code> | <code>In under 60 seconds to the end of the first quarter , The Patriots made a more than 79-yard offensive into their opponent 's side .</code> | <code>The Patriots countered on their next drive marching 80 yards culminating with a 4-yard touchdown run by Brady ( in the process Brady tied Curtis Martin 's club record for rushing touchdowns in the playoffs ) with less than a minute remaining in the first quarter .</code> |
243
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
244
+ ```json
245
+ {'guide': SentenceTransformer(
246
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
247
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
248
+ (2): Normalize()
249
+ ), 'temperature': 0.05}
250
+ ```
251
+
252
+ #### qnli-contrastive
253
+
254
+ * Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
255
+ * Size: 104,743 training samples
256
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
257
+ * Approximate statistics based on the first 1000 samples:
258
+ | | sentence1 | sentence2 | label |
259
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
260
+ | type | string | string | int |
261
+ | details | <ul><li>min: 3 tokens</li><li>mean: 13.68 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 34.78 tokens</li><li>max: 178 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
262
+ * Samples:
263
+ | sentence1 | sentence2 | label |
264
+ |:--------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
265
+ | <code>How many Protestants live in Greece?</code> | <code>Greek citizens who are Roman Catholic are estimated to be at around 50,000 with the Roman Catholic immigrant community in the country approximately 200,000.</code> | <code>0</code> |
266
+ | <code>What restricted the 1870s Child labour in Australia?</code> | <code>Child labour was restricted by compulsorry schooling.</code> | <code>0</code> |
267
+ | <code>Whose assumption of power ended the era of stagnation?</code> | <code>Under his rule, the Russian SFSR and the rest of the Soviet Union went through an era of stagnation.</code> | <code>0</code> |
268
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
269
+
270
+ #### scitail-pairs-qa
271
+
272
+ * Dataset: [scitail-pairs-qa](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
273
+ * Size: 14,987 training samples
274
+ * Columns: <code>sentence2</code> and <code>sentence1</code>
275
+ * Approximate statistics based on the first 1000 samples:
276
+ | | sentence2 | sentence1 |
277
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
278
+ | type | string | string |
279
+ | details | <ul><li>min: 7 tokens</li><li>mean: 15.72 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.86 tokens</li><li>max: 41 tokens</li></ul> |
280
+ * Samples:
281
+ | sentence2 | sentence1 |
282
+ |:----------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
283
+ | <code>Concave lenses can correct myopia.</code> | <code>What type of lenses can correct myopia?</code> |
284
+ | <code>Bases normally have a bitter taste.</code> | <code>What type of taste do bases normally have?</code> |
285
+ | <code>An acorn growing into an adult tree will take the longest time to observe.</code> | <code>Which of these will take the LONGEST time to observe?</code> |
286
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
287
+ ```json
288
+ {
289
+ "scale": 20.0,
290
+ "similarity_fct": "cos_sim"
291
+ }
292
+ ```
293
+
294
+ #### scitail-pairs-pos
295
+
296
+ * Dataset: [scitail-pairs-pos](https://huggingface.co/datasets/allenai/scitail) at [0cc4353](https://huggingface.co/datasets/allenai/scitail/tree/0cc4353235b289165dfde1c7c5d1be983f99ce44)
297
+ * Size: 8,600 training samples
298
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
299
+ * Approximate statistics based on the first 1000 samples:
300
+ | | sentence1 | sentence2 |
301
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
302
+ | type | string | string |
303
+ | details | <ul><li>min: 7 tokens</li><li>mean: 23.51 tokens</li><li>max: 67 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.66 tokens</li><li>max: 39 tokens</li></ul> |
304
+ * Samples:
305
+ | sentence1 | sentence2 |
306
+ |:---------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------|
307
+ | <code>One gram of carbohydrate provides four calories.</code> | <code>One gram of carbohydrates provides four calories of energy.</code> |
308
+ | <code>Our eyes can see a certain spectrum of light, called visible light, starting with red and ending with violet.</code> | <code>Violet and red are two types of visible light.</code> |
309
+ | <code>Adult-onset Diabetes Former term for noninsulin-dependent or type II diabetes.</code> | <code>Type 2 diabetes is also known as noninsulin-dependent or adult-onset diabetes.</code> |
310
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
311
+ ```json
312
+ {
313
+ "scale": 20.0,
314
+ "similarity_fct": "cos_sim"
315
+ }
316
+ ```
317
+
318
+ #### xsum-pairs
319
+
320
+ * Dataset: [xsum-pairs](https://huggingface.co/datasets/sentence-transformers/xsum) at [788ddaf](https://huggingface.co/datasets/sentence-transformers/xsum/tree/788ddafe04e539956d56b567bc32a036ee7b9206)
321
+ * Size: 150,000 training samples
322
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
323
+ * Approximate statistics based on the first 1000 samples:
324
+ | | sentence1 | sentence2 |
325
+ |:--------|:-------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
326
+ | type | string | string |
327
+ | details | <ul><li>min: 38 tokens</li><li>mean: 350.51 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 26.76 tokens</li><li>max: 60 tokens</li></ul> |
328
+ * Samples:
329
+ | sentence1 | sentence2 |
330
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------|
331
+ | <code>President Barack Obama has worked to improve relations with the communist government in Havana, culminating in his historic visit in March 2016.<br>The president-elect threatened in a tweet to put an end to the detente following the death of Fidel Castro.<br>But the White House bristled at Mr Trump's warning, saying the president was not concerned about the threat.<br>White House Press Secretary Josh Earnest told reporters that reversing the policy would be "a significant economic blow" to Cubans and was "not as easy as a stroke of a pen".<br>President-elect Trump tweeted he would "terminate" Mr Obama's policy on normalising relations with Cuba as thousands of Cubans queued to pay their respects to , who died on Friday.<br>They gathered in Havana's Revolution Square as part of farewell commemorations which will last until Tuesday night, when foreign leaders are due to arrive in Cuba to pay their respects.<br>A cortege will then transport his ashes east across the island to Santiago de Cuba, reversing the route Castro took during the Cuban revolution.<br>They will be laid to rest on Sunday in the city's Santa Ifigenia cemetery.<br>In his tweet, Mr Trump said that if "Cuba is unwilling to make a better deal for the Cuban people, the Cuban/American people and the US as a whole, I will terminate deal".<br>Mr Trump, who takes office in January, said during the election campaign that he would reverse President Barack Obama's rapprochement with Cuba.<br>Under Mr Obama, diplomatic ties were restored in 2015 after being severed in 1961. Some trade restrictions have been eased and the White House has been lobbying the US Congress to terminate an economic embargo that has been in place for decades.<br>What does a Trump presidency mean for US-Cuba relations?<br>Mr Trump's team has accused the Obama administration of giving too much away to Cuba without receiving enough in return.<br>His communications director, Jason Miller, said Mr Trump was seeking "freedom in Cuba for the Cubans and a good deal for Americans where we aren't played for fools".<br>But the White House said that better ties with Cuba served US interests and that reversing the changes would deal "a significant economic blow" to the people of Cuba.<br>"After five decades of not seeing results, the president believed it was time to try something different," said White House spokesman Josh Earnest.<br>In a separate development the first scheduled commercial flight from the US to Havana in more than 50 years has departed from Miami.<br>The American Airlines (AA) flight on Monday morning was the first of a new service to the Cuban capital which will fly from Florida four times a day.<br>"It's a monumental day of great historic relevance with Miami being the epicentre of the Cuban-American community and American's hub for the region," AA Vice President Ralph Lopez was quoted by The Miami Herald as saying.<br>Several airlines began routes to other parts of Cuba earlier this year, with many more flights and destinations in the offing.</code> | <code>Donald Trump says he will end the thaw between the US and Cuba if the country does not offer a "better deal".</code> |
332
+ | <code>It will allow members of the public to make complaints about the conduct of Scotland's charities<br>The new measure was recommended by the Fundraising Working Group in Scotland.<br>The Scottish government said it was important confidence was maintained in the country's charities, but stressed that the majority operated to high standards.<br>Communities Secretary Angela Constance said: "Scotland's charities benefit from a great deal of public trust and it's important that that confidence is maintained.<br>"This new phone number and website will be run by Scottish Fundraising Complaints - set up by the Scottish Council for Voluntary Organisations and the Scottish Charity Regulator - and will give people information about how to raise any concerns they may have."<br>Members of the public who are concerned about the fundraising tactics of a charity in Scotland can call 0808 164 2520 or visit the website.<br>Cross-border charities, where charities operate in Scotland but are registered in England and Wales, will continue to be regulated by the Fundraising Regulator.</code> | <code>A new phone number and website set up to protect the public against aggressive fundraisers has gone live.</code> |
333
+ | <code>Carla Whitlock was sprayed with drain cleaner containing sulphuric acid in Southampton on 18 September.<br>Billy Midmore, 23, who was found guilty of causing grievous bodily harm with intent, was jailed for 15 years with a further five years on licence.<br>Geoffrey Midmore, 27, had previously pleaded guilty to the same charge and was jailed for nine years.<br>Southampton Crown Court heard the acid was thrown in the 37-year-old's face after a drug deal went wrong.<br>Sentencing the pair, Judge Peter Ralls QC said: "Your behaviour displays a level of medieval barbarism that is appalling.<br>"You used a weapon that was pernicious and evil. You planned for this, which adds to the culpability."<br>Billy Midmore, who denied any involvement in the attack, admitted sending Ms Whitlock threatening texts after his brother was robbed of drugs and cash worth £2,000.<br>Brothers jailed for Southampton acid attack - as it happened<br>Prosecutors said he held the mother-of-six responsible after she helped broker the deal between the brothers and a Southampton drug dealer.<br>Train CCTV showed him giving a high-five and fist-bumping a friend hours after the attack.<br>The brothers, from London, were arrested in Gillingham, Kent, on 29 September, following a two-week nationwide manhunt.<br>During his trial, Billy Midmore admitted coming to Southampton from London to sell crack cocaine and heroin.<br>The court also heard Geoffrey Midmore had sent a photograph of the drain cleaner on WhatsApp to an acquaintance, with the words: "This is one face melter."<br>The court heard Ms Whitlock needed surgery after the attack and remained in "significant pain".<br>A consultant said her right eye was prone to "breakdown and infection" and her eyesight was unlikely to return.<br>The judge told the brothers: "You bought the drain cleaner because you intended to pour it in her face.<br>"To describe it as the 'face melter' could only have one interpretation."<br>After sentencing, Ch Insp Debra Masson, of Hampshire Constabulary, described the brothers as "men of violence" who "made people's lives a misery".<br>"The evidence shown in court of their behaviour directly after the attack, coupled with their concerted efforts to evade capture, served to expose them as the dangerous criminals they are," she said.<br>"Although things will never be the same for Carla, we hope that the sentence handed to Geoffrey and Billy Midmore today goes some way to giving her closure and allows her to feel that justice has been delivered."</code> | <code>Two brothers have been jailed for an acid attack which left a woman scarred and blind in one eye.</code> |
334
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
335
+ ```json
336
+ {
337
+ "scale": 20.0,
338
+ "similarity_fct": "cos_sim"
339
+ }
340
+ ```
341
+
342
+ #### compression-pairs
343
+
344
+ * Dataset: [compression-pairs](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
345
+ * Size: 180,000 training samples
346
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
347
+ * Approximate statistics based on the first 1000 samples:
348
+ | | sentence1 | sentence2 |
349
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
350
+ | type | string | string |
351
+ | details | <ul><li>min: 10 tokens</li><li>mean: 31.89 tokens</li><li>max: 125 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.21 tokens</li><li>max: 28 tokens</li></ul> |
352
+ * Samples:
353
+ | sentence1 | sentence2 |
354
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
355
+ | <code>The USHL completed an expansion draft on Monday as 10 players who were on the rosters of USHL teams during the 2009-10 season were selected by the League's two newest entries, the Muskegon Lumberjacks and Dubuque Fighting Saints.</code> | <code>USHL completes expansion draft</code> |
356
+ | <code>Major League Baseball Commissioner Bud Selig will be speaking at St. Norbert College next month.</code> | <code>Bud Selig to speak at St. Norbert College</code> |
357
+ | <code>It's fresh cherry time in Michigan and the best time to enjoy this delicious and nutritious fruit.</code> | <code>It's cherry time</code> |
358
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
359
+ ```json
360
+ {
361
+ "scale": 20.0,
362
+ "similarity_fct": "cos_sim"
363
+ }
364
+ ```
365
+
366
+ ### Evaluation Datasets
367
+
368
+ #### nli-pairs
369
+
370
+ * Dataset: [nli-pairs](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
371
+ * Size: 6,808 evaluation samples
372
+ * Columns: <code>sentence1</code> and <code>sentence2</code>
373
+ * Approximate statistics based on the first 1000 samples:
374
+ | | sentence1 | sentence2 |
375
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
376
+ | type | string | string |
377
+ | details | <ul><li>min: 5 tokens</li><li>mean: 17.64 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.67 tokens</li><li>max: 29 tokens</li></ul> |
378
+ * Samples:
379
+ | sentence1 | sentence2 |
380
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|
381
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> |
382
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> |
383
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> |
384
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
385
+ ```json
386
+ {
387
+ "scale": 20.0,
388
+ "similarity_fct": "cos_sim"
389
+ }
390
+ ```
391
+
392
+ #### qnli-contrastive
393
+
394
+ * Dataset: [qnli-contrastive](https://huggingface.co/datasets/nyu-mll/glue) at [bcdcba7](https://huggingface.co/datasets/nyu-mll/glue/tree/bcdcba79d07bc864c1c254ccfcedcce55bcc9a8c)
395
+ * Size: 5,463 evaluation samples
396
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
397
+ * Approximate statistics based on the first 1000 samples:
398
+ | | sentence1 | sentence2 | label |
399
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------|
400
+ | type | string | string | int |
401
+ | details | <ul><li>min: 6 tokens</li><li>mean: 14.13 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 36.58 tokens</li><li>max: 225 tokens</li></ul> | <ul><li>0: 100.00%</li></ul> |
402
+ * Samples:
403
+ | sentence1 | sentence2 | label |
404
+ |:--------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
405
+ | <code>What came into force after the new constitution was herald?</code> | <code>As of that day, the new constitution heralding the Second Republic came into force.</code> | <code>0</code> |
406
+ | <code>What is the first major city in the stream of the Rhine?</code> | <code>The most important tributaries in this area are the Ill below of Strasbourg, the Neckar in Mannheim and the Main across from Mainz.</code> | <code>0</code> |
407
+ | <code>What is the minimum required if you want to teach in Canada?</code> | <code>In most provinces a second Bachelor's Degree such as a Bachelor of Education is required to become a qualified teacher.</code> | <code>0</code> |
408
+ * Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
409
+
410
+ ### Training Hyperparameters
411
+ #### Non-Default Hyperparameters
412
+
413
+ - `eval_strategy`: steps
414
+ - `per_device_train_batch_size`: 20
415
+ - `per_device_eval_batch_size`: 16
416
+ - `learning_rate`: 5e-06
417
+ - `weight_decay`: 1e-10
418
+ - `lr_scheduler_type`: cosine
419
+ - `warmup_ratio`: 0.33
420
+ - `save_safetensors`: False
421
+ - `fp16`: True
422
+ - `push_to_hub`: True
423
+ - `hub_model_id`: bobox/DeBERTaV3-small-GeneralSentenceTransformer-keepTraining-checkpoints-tmp
424
+ - `hub_strategy`: checkpoint
425
+ - `batch_sampler`: no_duplicates
426
+
427
+ #### All Hyperparameters
428
+ <details><summary>Click to expand</summary>
429
+
430
+ - `overwrite_output_dir`: False
431
+ - `do_predict`: False
432
+ - `eval_strategy`: steps
433
+ - `prediction_loss_only`: True
434
+ - `per_device_train_batch_size`: 20
435
+ - `per_device_eval_batch_size`: 16
436
+ - `per_gpu_train_batch_size`: None
437
+ - `per_gpu_eval_batch_size`: None
438
+ - `gradient_accumulation_steps`: 1
439
+ - `eval_accumulation_steps`: None
440
+ - `learning_rate`: 5e-06
441
+ - `weight_decay`: 1e-10
442
+ - `adam_beta1`: 0.9
443
+ - `adam_beta2`: 0.999
444
+ - `adam_epsilon`: 1e-08
445
+ - `max_grad_norm`: 1.0
446
+ - `num_train_epochs`: 3
447
+ - `max_steps`: -1
448
+ - `lr_scheduler_type`: cosine
449
+ - `lr_scheduler_kwargs`: {}
450
+ - `warmup_ratio`: 0.33
451
+ - `warmup_steps`: 0
452
+ - `log_level`: passive
453
+ - `log_level_replica`: warning
454
+ - `log_on_each_node`: True
455
+ - `logging_nan_inf_filter`: True
456
+ - `save_safetensors`: False
457
+ - `save_on_each_node`: False
458
+ - `save_only_model`: False
459
+ - `restore_callback_states_from_checkpoint`: False
460
+ - `no_cuda`: False
461
+ - `use_cpu`: False
462
+ - `use_mps_device`: False
463
+ - `seed`: 42
464
+ - `data_seed`: None
465
+ - `jit_mode_eval`: False
466
+ - `use_ipex`: False
467
+ - `bf16`: False
468
+ - `fp16`: True
469
+ - `fp16_opt_level`: O1
470
+ - `half_precision_backend`: auto
471
+ - `bf16_full_eval`: False
472
+ - `fp16_full_eval`: False
473
+ - `tf32`: None
474
+ - `local_rank`: 0
475
+ - `ddp_backend`: None
476
+ - `tpu_num_cores`: None
477
+ - `tpu_metrics_debug`: False
478
+ - `debug`: []
479
+ - `dataloader_drop_last`: False
480
+ - `dataloader_num_workers`: 0
481
+ - `dataloader_prefetch_factor`: None
482
+ - `past_index`: -1
483
+ - `disable_tqdm`: False
484
+ - `remove_unused_columns`: True
485
+ - `label_names`: None
486
+ - `load_best_model_at_end`: False
487
+ - `ignore_data_skip`: False
488
+ - `fsdp`: []
489
+ - `fsdp_min_num_params`: 0
490
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
491
+ - `fsdp_transformer_layer_cls_to_wrap`: None
492
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
493
+ - `deepspeed`: None
494
+ - `label_smoothing_factor`: 0.0
495
+ - `optim`: adamw_torch
496
+ - `optim_args`: None
497
+ - `adafactor`: False
498
+ - `group_by_length`: False
499
+ - `length_column_name`: length
500
+ - `ddp_find_unused_parameters`: None
501
+ - `ddp_bucket_cap_mb`: None
502
+ - `ddp_broadcast_buffers`: False
503
+ - `dataloader_pin_memory`: True
504
+ - `dataloader_persistent_workers`: False
505
+ - `skip_memory_metrics`: True
506
+ - `use_legacy_prediction_loop`: False
507
+ - `push_to_hub`: True
508
+ - `resume_from_checkpoint`: None
509
+ - `hub_model_id`: bobox/DeBERTaV3-small-GeneralSentenceTransformer-keepTraining-checkpoints-tmp
510
+ - `hub_strategy`: checkpoint
511
+ - `hub_private_repo`: False
512
+ - `hub_always_push`: False
513
+ - `gradient_checkpointing`: False
514
+ - `gradient_checkpointing_kwargs`: None
515
+ - `include_inputs_for_metrics`: False
516
+ - `eval_do_concat_batches`: True
517
+ - `fp16_backend`: auto
518
+ - `push_to_hub_model_id`: None
519
+ - `push_to_hub_organization`: None
520
+ - `mp_parameters`:
521
+ - `auto_find_batch_size`: False
522
+ - `full_determinism`: False
523
+ - `torchdynamo`: None
524
+ - `ray_scope`: last
525
+ - `ddp_timeout`: 1800
526
+ - `torch_compile`: False
527
+ - `torch_compile_backend`: None
528
+ - `torch_compile_mode`: None
529
+ - `dispatch_batches`: None
530
+ - `split_batches`: None
531
+ - `include_tokens_per_second`: False
532
+ - `include_num_input_tokens_seen`: False
533
+ - `neftune_noise_alpha`: None
534
+ - `optim_target_modules`: None
535
+ - `batch_eval_metrics`: False
536
+ - `batch_sampler`: no_duplicates
537
+ - `multi_dataset_batch_sampler`: proportional
538
+
539
+ </details>
540
+
541
+ ### Training Logs
542
+ | Epoch | Step | Training Loss | nli-pairs loss | qnli-contrastive loss |
543
+ |:------:|:-----:|:-------------:|:--------------:|:---------------------:|
544
+ | None | 0 | - | 0.1391 | 0.0068 |
545
+ | 0.1500 | 5170 | 0.2058 | 0.1433 | 0.0066 |
546
+ | 0.3000 | 10340 | 0.1978 | 0.1448 | 0.0053 |
547
+ | 0.4500 | 15510 | 0.2122 | 0.1443 | 0.0063 |
548
+ | 0.6000 | 20680 | 0.1918 | 0.1494 | 0.0053 |
549
+ | 0.7501 | 25850 | 0.2103 | 0.1488 | 0.0082 |
550
+ | 0.9001 | 31020 | 0.2056 | 0.1513 | 0.0039 |
551
+
552
+
553
+ ### Framework Versions
554
+ - Python: 3.10.13
555
+ - Sentence Transformers: 3.0.1
556
+ - Transformers: 4.41.2
557
+ - PyTorch: 2.1.2
558
+ - Accelerate: 0.30.1
559
+ - Datasets: 2.19.2
560
+ - Tokenizers: 0.19.1
561
+
562
+ ## Citation
563
+
564
+ ### BibTeX
565
+
566
+ #### Sentence Transformers
567
+ ```bibtex
568
+ @inproceedings{reimers-2019-sentence-bert,
569
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
570
+ author = "Reimers, Nils and Gurevych, Iryna",
571
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
572
+ month = "11",
573
+ year = "2019",
574
+ publisher = "Association for Computational Linguistics",
575
+ url = "https://arxiv.org/abs/1908.10084",
576
+ }
577
+ ```
578
+
579
+ #### MultipleNegativesRankingLoss
580
+ ```bibtex
581
+ @misc{henderson2017efficient,
582
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
583
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
584
+ year={2017},
585
+ eprint={1705.00652},
586
+ archivePrefix={arXiv},
587
+ primaryClass={cs.CL}
588
+ }
589
+ ```
590
+
591
+ #### CoSENTLoss
592
+ ```bibtex
593
+ @online{kexuefm-8847,
594
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
595
+ author={Su Jianlin},
596
+ year={2022},
597
+ month={Jan},
598
+ url={https://kexue.fm/archives/8847},
599
+ }
600
+ ```
601
+
602
+ #### GISTEmbedLoss
603
+ ```bibtex
604
+ @misc{solatorio2024gistembed,
605
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
606
+ author={Aivin V. Solatorio},
607
+ year={2024},
608
+ eprint={2402.16829},
609
+ archivePrefix={arXiv},
610
+ primaryClass={cs.LG}
611
+ }
612
+ ```
613
+
614
+ <!--
615
+ ## Glossary
616
+
617
+ *Clearly define terms in order to be accessible across audiences.*
618
+ -->
619
+
620
+ <!--
621
+ ## Model Card Authors
622
+
623
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
624
+ -->
625
+
626
+ <!--
627
+ ## Model Card Contact
628
+
629
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
630
+ -->
last-checkpoint/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "[MASK]": 128000
3
+ }
last-checkpoint/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bobox/DeBERTaV3-small-GeneralSentenceTransformer",
3
+ "architectures": [
4
+ "DebertaV2Model"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-07,
13
+ "max_position_embeddings": 512,
14
+ "max_relative_positions": -1,
15
+ "model_type": "deberta-v2",
16
+ "norm_rel_ebd": "layer_norm",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "pooler_dropout": 0,
21
+ "pooler_hidden_act": "gelu",
22
+ "pooler_hidden_size": 768,
23
+ "pos_att_type": [
24
+ "p2c",
25
+ "c2p"
26
+ ],
27
+ "position_biased_input": false,
28
+ "position_buckets": 256,
29
+ "relative_attention": true,
30
+ "share_att_key": true,
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.41.2",
33
+ "type_vocab_size": 0,
34
+ "vocab_size": 128100
35
+ }
last-checkpoint/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
last-checkpoint/modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
last-checkpoint/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aaf87bb13046028734be90752771144aaea10be484bb1bf6bd2a0259e7d15a2
3
+ size 1130520122
last-checkpoint/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:948aeb47d3b4ece77853054875d7cd8623a91ad195a23f1375df30e23b0bd550
3
+ size 565251810
last-checkpoint/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2cfc2a4e406b13ab6c68c4666a4523963a93147dc76551672404fbc20c90b68
3
+ size 14180
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10fdc263b51d98641af52cf837a2f3c4f9e5027460536e6f4b62067f974df7c7
3
+ size 1064
last-checkpoint/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
last-checkpoint/spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3
+ size 2464616
last-checkpoint/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[CLS]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128000": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_lower_case": false,
48
+ "eos_token": "[SEP]",
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "sp_model_kwargs": {},
58
+ "split_by_punct": false,
59
+ "stride": 0,
60
+ "tokenizer_class": "DebertaV2Tokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]",
64
+ "vocab_type": "spm"
65
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 5170,
6
+ "global_step": 34464,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.15001160631383473,
13
+ "grad_norm": 6.272289752960205,
14
+ "learning_rate": 7.568874560375147e-07,
15
+ "loss": 0.2058,
16
+ "step": 5170
17
+ },
18
+ {
19
+ "epoch": 0.15001160631383473,
20
+ "eval_nli-pairs_loss": 0.14333350956439972,
21
+ "eval_nli-pairs_runtime": 15.7419,
22
+ "eval_nli-pairs_samples_per_second": 432.477,
23
+ "eval_nli-pairs_steps_per_second": 27.062,
24
+ "step": 5170
25
+ },
26
+ {
27
+ "epoch": 0.15001160631383473,
28
+ "eval_qnli-contrastive_loss": 0.0066042630933225155,
29
+ "eval_qnli-contrastive_runtime": 16.0666,
30
+ "eval_qnli-contrastive_samples_per_second": 340.022,
31
+ "eval_qnli-contrastive_steps_per_second": 21.286,
32
+ "step": 5170
33
+ },
34
+ {
35
+ "epoch": 0.30002321262766946,
36
+ "grad_norm": 0.1510516107082367,
37
+ "learning_rate": 1.5143610785463074e-06,
38
+ "loss": 0.1978,
39
+ "step": 10340
40
+ },
41
+ {
42
+ "epoch": 0.30002321262766946,
43
+ "eval_nli-pairs_loss": 0.14484703540802002,
44
+ "eval_nli-pairs_runtime": 15.5078,
45
+ "eval_nli-pairs_samples_per_second": 439.004,
46
+ "eval_nli-pairs_steps_per_second": 27.47,
47
+ "step": 10340
48
+ },
49
+ {
50
+ "epoch": 0.30002321262766946,
51
+ "eval_qnli-contrastive_loss": 0.005310256965458393,
52
+ "eval_qnli-contrastive_runtime": 15.9103,
53
+ "eval_qnli-contrastive_samples_per_second": 343.363,
54
+ "eval_qnli-contrastive_steps_per_second": 21.496,
55
+ "step": 10340
56
+ },
57
+ {
58
+ "epoch": 0.45003481894150416,
59
+ "grad_norm": 0.12565171718597412,
60
+ "learning_rate": 2.271541617819461e-06,
61
+ "loss": 0.2122,
62
+ "step": 15510
63
+ },
64
+ {
65
+ "epoch": 0.45003481894150416,
66
+ "eval_nli-pairs_loss": 0.14426207542419434,
67
+ "eval_nli-pairs_runtime": 15.502,
68
+ "eval_nli-pairs_samples_per_second": 439.169,
69
+ "eval_nli-pairs_steps_per_second": 27.48,
70
+ "step": 15510
71
+ },
72
+ {
73
+ "epoch": 0.45003481894150416,
74
+ "eval_qnli-contrastive_loss": 0.006289388053119183,
75
+ "eval_qnli-contrastive_runtime": 15.9331,
76
+ "eval_qnli-contrastive_samples_per_second": 342.872,
77
+ "eval_qnli-contrastive_steps_per_second": 21.465,
78
+ "step": 15510
79
+ },
80
+ {
81
+ "epoch": 0.6000464252553389,
82
+ "grad_norm": 2.5047528743743896,
83
+ "learning_rate": 3.0288686987104337e-06,
84
+ "loss": 0.1918,
85
+ "step": 20680
86
+ },
87
+ {
88
+ "epoch": 0.6000464252553389,
89
+ "eval_nli-pairs_loss": 0.14941762387752533,
90
+ "eval_nli-pairs_runtime": 15.559,
91
+ "eval_nli-pairs_samples_per_second": 437.561,
92
+ "eval_nli-pairs_steps_per_second": 27.38,
93
+ "step": 20680
94
+ },
95
+ {
96
+ "epoch": 0.6000464252553389,
97
+ "eval_qnli-contrastive_loss": 0.005304055288434029,
98
+ "eval_qnli-contrastive_runtime": 15.9267,
99
+ "eval_qnli-contrastive_samples_per_second": 343.01,
100
+ "eval_qnli-contrastive_steps_per_second": 21.473,
101
+ "step": 20680
102
+ },
103
+ {
104
+ "epoch": 0.7500580315691736,
105
+ "grad_norm": 0.0,
106
+ "learning_rate": 3.7861957796014073e-06,
107
+ "loss": 0.2103,
108
+ "step": 25850
109
+ },
110
+ {
111
+ "epoch": 0.7500580315691736,
112
+ "eval_nli-pairs_loss": 0.14879679679870605,
113
+ "eval_nli-pairs_runtime": 15.7056,
114
+ "eval_nli-pairs_samples_per_second": 433.477,
115
+ "eval_nli-pairs_steps_per_second": 27.124,
116
+ "step": 25850
117
+ },
118
+ {
119
+ "epoch": 0.7500580315691736,
120
+ "eval_qnli-contrastive_loss": 0.008172737434506416,
121
+ "eval_qnli-contrastive_runtime": 16.1249,
122
+ "eval_qnli-contrastive_samples_per_second": 338.792,
123
+ "eval_qnli-contrastive_steps_per_second": 21.209,
124
+ "step": 25850
125
+ },
126
+ {
127
+ "epoch": 0.9000696378830083,
128
+ "grad_norm": 0.4431862533092499,
129
+ "learning_rate": 4.543376318874561e-06,
130
+ "loss": 0.2056,
131
+ "step": 31020
132
+ },
133
+ {
134
+ "epoch": 0.9000696378830083,
135
+ "eval_nli-pairs_loss": 0.15133754909038544,
136
+ "eval_nli-pairs_runtime": 15.6187,
137
+ "eval_nli-pairs_samples_per_second": 435.887,
138
+ "eval_nli-pairs_steps_per_second": 27.275,
139
+ "step": 31020
140
+ },
141
+ {
142
+ "epoch": 0.9000696378830083,
143
+ "eval_qnli-contrastive_loss": 0.003923382144421339,
144
+ "eval_qnli-contrastive_runtime": 15.9272,
145
+ "eval_qnli-contrastive_samples_per_second": 342.998,
146
+ "eval_qnli-contrastive_steps_per_second": 21.473,
147
+ "step": 31020
148
+ }
149
+ ],
150
+ "logging_steps": 5170,
151
+ "max_steps": 103392,
152
+ "num_input_tokens_seen": 0,
153
+ "num_train_epochs": 3,
154
+ "save_steps": 500,
155
+ "stateful_callbacks": {
156
+ "TrainerControl": {
157
+ "args": {
158
+ "should_epoch_stop": false,
159
+ "should_evaluate": false,
160
+ "should_log": false,
161
+ "should_save": true,
162
+ "should_training_stop": false
163
+ },
164
+ "attributes": {}
165
+ }
166
+ },
167
+ "total_flos": 0.0,
168
+ "train_batch_size": 20,
169
+ "trial_name": null,
170
+ "trial_params": null
171
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdd59944cb7c7723e104f2035233d5c30cbe32cfee60d4378c1a092a199fc560
3
+ size 5688