File size: 6,594 Bytes
2a907aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: deberta-v3-small_v1_no_entities_with_context
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-small_v1_no_entities_with_context

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0315
- Accuracy: 0.0062
- F1: 0.0086
- Precision: 0.0043
- Recall: 0.9070
- Learning Rate: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall | Rate   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:------:|
| No log        | 1.0   | 191  | 0.0385          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| No log        | 2.0   | 382  | 0.0282          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.1139        | 3.0   | 573  | 0.0274          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.1139        | 4.0   | 764  | 0.0270          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.1139        | 5.0   | 955  | 0.0271          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0317        | 6.0   | 1146 | 0.0269          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0317        | 7.0   | 1337 | 0.0271          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0316        | 8.0   | 1528 | 0.0264          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0316        | 9.0   | 1719 | 0.0261          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0316        | 10.0  | 1910 | 0.0261          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0299        | 11.0  | 2101 | 0.0263          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0299        | 12.0  | 2292 | 0.0262          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0299        | 13.0  | 2483 | 0.0260          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0294        | 14.0  | 2674 | 0.0263          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.0294        | 15.0  | 2865 | 0.0259          | 0.0047   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.026         | 16.0  | 3056 | 0.0262          | 0.0050   | 0.0094 | 0.0047    | 1.0    | 0.0000 |
| 0.026         | 17.0  | 3247 | 0.0265          | 0.0050   | 0.0092 | 0.0046    | 0.9767 | 0.0000 |
| 0.026         | 18.0  | 3438 | 0.0270          | 0.0048   | 0.0093 | 0.0047    | 0.9884 | 0.0000 |
| 0.0224        | 19.0  | 3629 | 0.0272          | 0.0056   | 0.0090 | 0.0045    | 0.9535 | 0.0000 |
| 0.0224        | 20.0  | 3820 | 0.0271          | 0.0055   | 0.0091 | 0.0046    | 0.9651 | 0.0000 |
| 0.0197        | 21.0  | 4011 | 0.0271          | 0.0052   | 0.0090 | 0.0045    | 0.9535 | 0.0000 |
| 0.0197        | 22.0  | 4202 | 0.0270          | 0.0050   | 0.0090 | 0.0045    | 0.9535 | 0.0000 |
| 0.0197        | 23.0  | 4393 | 0.0271          | 0.0056   | 0.0090 | 0.0045    | 0.9535 | 0.0000 |
| 0.0172        | 24.0  | 4584 | 0.0275          | 0.0053   | 0.0089 | 0.0045    | 0.9419 | 0.0000 |
| 0.0172        | 25.0  | 4775 | 0.0273          | 0.0053   | 0.0089 | 0.0045    | 0.9419 | 1e-05  |
| 0.0172        | 26.0  | 4966 | 0.0282          | 0.0061   | 0.0087 | 0.0044    | 0.9186 | 0.0000 |
| 0.0152        | 27.0  | 5157 | 0.0281          | 0.0060   | 0.0088 | 0.0044    | 0.9302 | 0.0000 |
| 0.0152        | 28.0  | 5348 | 0.0281          | 0.0058   | 0.0088 | 0.0044    | 0.9302 | 0.0000 |
| 0.0138        | 29.0  | 5539 | 0.0277          | 0.0059   | 0.0088 | 0.0044    | 0.9302 | 0.0000 |
| 0.0138        | 30.0  | 5730 | 0.0292          | 0.0056   | 0.0089 | 0.0045    | 0.9419 | 0.0000 |
| 0.0138        | 31.0  | 5921 | 0.0287          | 0.0061   | 0.0088 | 0.0044    | 0.9302 | 0.0000 |
| 0.0124        | 32.0  | 6112 | 0.0289          | 0.0059   | 0.0087 | 0.0044    | 0.9186 | 0.0000 |
| 0.0124        | 33.0  | 6303 | 0.0300          | 0.0062   | 0.0086 | 0.0043    | 0.9070 | 0.0000 |
| 0.0124        | 34.0  | 6494 | 0.0293          | 0.0057   | 0.0087 | 0.0044    | 0.9186 | 0.0000 |
| 0.0113        | 35.0  | 6685 | 0.0297          | 0.0059   | 0.0089 | 0.0045    | 0.9419 | 6e-06  |
| 0.0113        | 36.0  | 6876 | 0.0293          | 0.0060   | 0.0086 | 0.0043    | 0.9070 | 0.0000 |
| 0.0106        | 37.0  | 7067 | 0.0295          | 0.0060   | 0.0085 | 0.0043    | 0.8953 | 0.0000 |
| 0.0106        | 38.0  | 7258 | 0.0301          | 0.0063   | 0.0086 | 0.0043    | 0.9070 | 0.0000 |
| 0.0106        | 39.0  | 7449 | 0.0300          | 0.0063   | 0.0085 | 0.0043    | 0.8953 | 0.0000 |
| 0.0092        | 40.0  | 7640 | 0.0297          | 0.0057   | 0.0086 | 0.0043    | 0.9070 | 0.0000 |
| 0.0092        | 41.0  | 7831 | 0.0299          | 0.0061   | 0.0086 | 0.0043    | 0.9070 | 0.0000 |
| 0.0091        | 42.0  | 8022 | 0.0298          | 0.0064   | 0.0086 | 0.0043    | 0.9070 | 0.0000 |
| 0.0091        | 43.0  | 8213 | 0.0302          | 0.0061   | 0.0087 | 0.0044    | 0.9186 | 0.0000 |
| 0.0091        | 44.0  | 8404 | 0.0307          | 0.0062   | 0.0086 | 0.0043    | 0.9070 | 0.0000 |
| 0.0082        | 45.0  | 8595 | 0.0310          | 0.0062   | 0.0086 | 0.0043    | 0.9070 | 0.0000 |
| 0.0082        | 46.0  | 8786 | 0.0308          | 0.0062   | 0.0087 | 0.0044    | 0.9186 | 0.0000 |
| 0.0082        | 47.0  | 8977 | 0.0314          | 0.0062   | 0.0087 | 0.0044    | 0.9186 | 0.0000 |
| 0.0081        | 48.0  | 9168 | 0.0314          | 0.0064   | 0.0087 | 0.0044    | 0.9186 | 0.0000 |
| 0.0081        | 49.0  | 9359 | 0.0315          | 0.0062   | 0.0086 | 0.0043    | 0.9070 | 0.0000 |
| 0.0077        | 50.0  | 9550 | 0.0315          | 0.0062   | 0.0086 | 0.0043    | 0.9070 | 0.0    |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1