Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.1
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- py
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- llama-3.1
|
9 |
+
- python
|
10 |
+
- code-generation
|
11 |
+
- instruction-following
|
12 |
+
- fine-tune
|
13 |
+
- alpaca
|
14 |
+
- unsloth
|
15 |
+
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
16 |
+
datasets:
|
17 |
+
- iamtarun/python_code_instructions_18k_alpaca
|
18 |
+
---
|
19 |
+
---
|
20 |
+
|
21 |
+
# Llama-3.1-8B-Instruct-Python-Alpaca-Unsloth
|
22 |
+
|
23 |
+
This is a fine-tuned version of Meta's **`Llama-3.1-8B-Instruct`** model, specialized for Python code generation. It was trained on the high-quality **`iamtarun/python_code_instructions_18k_alpaca`** dataset using the **Unsloth** library for significantly faster training and reduced memory usage.
|
24 |
+
|
25 |
+
The result is a powerful and responsive coding assistant, designed to follow instructions and generate accurate, high-quality Python code.
|
26 |
+
|
27 |
+
---
|
28 |
+
## ## Model Details 🛠️
|
29 |
+
|
30 |
+
* **Base Model:** `meta-llama/Meta-Llama-3.1-8B-Instruct`
|
31 |
+
* **Dataset:** `iamtarun/python_code_instructions_18k_alpaca` (18,000 instruction-following examples for Python)
|
32 |
+
* **Fine-tuning Technique:** QLoRA (4-bit Quantization with LoRA adapters)
|
33 |
+
* **Framework:** Unsloth (for up to 2x faster training and optimized memory)
|
34 |
+
|
35 |
+
---
|
36 |
+
## ## How to Use 👨💻
|
37 |
+
|
38 |
+
This model is designed to be used with the Unsloth library for maximum performance, but it can also be used with the standard Hugging Face `transformers` library. For the best results, always use the Llama 3 chat template.
|
39 |
+
|
40 |
+
### ### Using with Unsloth (Recommended)
|
41 |
+
|
42 |
+
```python
|
43 |
+
from unsloth import FastLanguageModel
|
44 |
+
import torch
|
45 |
+
|
46 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
47 |
+
model_name = "YOUR_USERNAME/YOUR_MODEL_NAME", # REMEMBER TO REPLACE THIS
|
48 |
+
max_seq_length = 4096,
|
49 |
+
dtype = None,
|
50 |
+
load_in_4bit = True,
|
51 |
+
)
|
52 |
+
|
53 |
+
# Prepare the model for faster inference
|
54 |
+
FastLanguageModel.for_inference(model)
|
55 |
+
|
56 |
+
messages = [
|
57 |
+
{
|
58 |
+
"role": "system",
|
59 |
+
"content": "You are a helpful Python coding assistant. Please provide a clear, concise, and correct Python code response to the user's request."
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"role": "user",
|
63 |
+
"content": "Create a Python function that finds the nth Fibonacci number using recursion."
|
64 |
+
},
|
65 |
+
]
|
66 |
+
|
67 |
+
input_ids = tokenizer.apply_chat_template(
|
68 |
+
messages,
|
69 |
+
add_generation_prompt=True,
|
70 |
+
return_tensors="pt"
|
71 |
+
).to(model.device)
|
72 |
+
|
73 |
+
outputs = model.generate(
|
74 |
+
input_ids,
|
75 |
+
max_new_tokens=200,
|
76 |
+
do_sample=True,
|
77 |
+
temperature=0.6,
|
78 |
+
top_p=0.9,
|
79 |
+
eos_token_id=tokenizer.eos_token_id
|
80 |
+
)
|
81 |
+
|
82 |
+
response = outputs[0][input_ids.shape[-1]:]
|
83 |
+
print(tokenizer.decode(response, skip_special_tokens=True))
|