Diffusers
Safetensors
English
vae
convolutional
generative
vpippi commited on
Commit
ac782ef
·
verified ·
1 Parent(s): edf61ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -21
README.md CHANGED
@@ -52,10 +52,11 @@ Below is an example code snippet that demonstrates how to load an image directly
52
  ### Code Example
53
 
54
  ```python
55
- from diffusers import AutoencoderKL
56
  import torch
57
- from torchvision.transforms.functional import to_tensor, to_pil_image
58
  from PIL import Image
 
 
 
59
 
60
  # Load the pre-trained Emuru VAE from Hugging Face Hub.
61
  model = AutoencoderKL.from_pretrained("vpippi/emuru_vae")
@@ -74,8 +75,9 @@ def postprocess_tensor(tensor):
74
  return to_pil_image(tensor)
75
 
76
  # Example: Encode and decode an image.
77
- # Replace with your image path.
78
- image_path = "/path/to/image"
 
79
  input_image = preprocess_image(image_path)
80
 
81
  # Encode the image to the latent space.
@@ -96,20 +98,4 @@ reconstructed_image = postprocess_tensor(reconstructed)
96
 
97
  # Save the reconstructed image.
98
  reconstructed_image.save("reconstructed_image.png")
99
- ```
100
-
101
- ## Additional Information
102
-
103
- If you'd like to test with images hosted directly on the Hugging Face Hub, consider:
104
- - **Including sample images in your repository:** Place them in a folder (e.g., `samples/`) and reference them directly.
105
- - **Using the `huggingface_hub` API:** For example:
106
-
107
- ```python
108
- from huggingface_hub import hf_hub_download
109
- from PIL import Image
110
-
111
- # Replace 'vpippi/emuru_vae' and 'samples/lam_sample.jpg' with your details.
112
- image_path = hf_hub_download(repo_id="vpippi/emuru_vae", filename="samples/lam_sample.jpg")
113
- sample_image = Image.open(image_path).convert("RGB")
114
- sample_image.show()
115
- ```
 
52
  ### Code Example
53
 
54
  ```python
 
55
  import torch
 
56
  from PIL import Image
57
+ from diffusers import AutoencoderKL
58
+ from huggingface_hub import hf_hub_download
59
+ from torchvision.transforms.functional import to_tensor, to_pil_image
60
 
61
  # Load the pre-trained Emuru VAE from Hugging Face Hub.
62
  model = AutoencoderKL.from_pretrained("vpippi/emuru_vae")
 
75
  return to_pil_image(tensor)
76
 
77
  # Example: Encode and decode an image.
78
+ # Replace the following line with your image path.
79
+ image_path = hf_hub_download(repo_id="vpippi/emuru_vae", filename="samples/lam_sample.jpg")
80
+
81
  input_image = preprocess_image(image_path)
82
 
83
  # Encode the image to the latent space.
 
98
 
99
  # Save the reconstructed image.
100
  reconstructed_image.save("reconstructed_image.png")
101
+ ```