# modeling_emuru.py import torch import torch.nn as nn from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer from configuration_emuru import EmuruConfig from diffusers import AutoencoderKL from einops.layers.torch import Rearrange from einops import rearrange, repeat class Emuru(PreTrainedModel): config_class = EmuruConfig # Link to your configuration def __init__(self, config): super().__init__(config) # Initialize the tokenizer (if you want it as part of your model) self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_config) # Load T5 using the provided filename from config t5_config = T5Config.from_pretrained(config.t5_config) t5_config.vocab_size = len(self.tokenizer) self.T5 = T5ForConditionalGeneration(t5_config) self.T5.lm_head = nn.Identity() self.sos = nn.Embedding(1, t5_config.d_model) vae_latent_size = 8 * config.vae_channels * config.slices_per_query self.query_emb = nn.Linear(vae_latent_size, t5_config.d_model) self.t5_to_vae = nn.Linear(t5_config.d_model, vae_latent_size, bias=False) self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False) self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False) # Load VAE self.vae = AutoencoderKL.from_pretrained(config.vae_config) self.set_training(self.vae, False) # Define the rearrange layers self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query) self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query) self.z_rearrange_eval = Rearrange('w b (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query) # Define your loss functions self.mse_criterion = nn.MSELoss() # Initialize weights following Hugging Face conventions (if needed) self.init_weights() def set_training(self, model, training): model.train() if training else model.eval() for param in model.parameters(): param.requires_grad = training # --- Implement the rest of your methods --- # For example, _img_encode, forward, generate, etc. # You can largely port your existing code here, making sure that: # - The forward method returns a dictionary with your losses and outputs. # - You use the Hugging Face methods for saving/loading weights. def forward(self, text=None, img=None, input_ids=None, attention_mask=None, length=None, noise=0): # Your forward implementation (port over from your original code) # Make sure to call self._img_encode(img, noise) and use self.T5, etc. ... # Add other methods (forward_recurrent, generate, etc.) as needed.