Vittorio Pippi
commited on
Commit
·
7ad9600
1
Parent(s):
935404c
Add README.md with model description and usage instructions for Emuru
Browse files
README.md
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- image-generation
|
6 |
+
- text-to-image
|
7 |
+
- vae
|
8 |
+
- t5
|
9 |
+
- conditional-generation
|
10 |
+
- generative-modeling
|
11 |
+
- image-synthesis
|
12 |
+
- image-manipulation
|
13 |
+
- design-prototyping
|
14 |
+
- research
|
15 |
+
- educational
|
16 |
+
license: mit
|
17 |
+
datasets:
|
18 |
+
- blowing-up-groundhogs/font-square-v2
|
19 |
+
metrics:
|
20 |
+
- FID
|
21 |
+
- KID
|
22 |
+
- HWD
|
23 |
+
- CER
|
24 |
+
library_name: t5
|
25 |
+
---
|
26 |
+
|
27 |
+
# Emuru
|
28 |
+
|
29 |
+
**Emuru** is a conditional generative model that integrates a T5-based decoder with a Variational Autoencoder (VAE) for image generation conditioned on text and style images. It allows users to combine textual prompts (e.g., style text, generation text) and style images to create new, synthesized images.
|
30 |
+
|
31 |
+
|
32 |
+
## Model description
|
33 |
+
|
34 |
+
- **Architecture**:
|
35 |
+
Emuru uses a [T5ForConditionalGeneration](https://huggingface.co/docs/transformers/model_doc/t5) as its text decoder and an [AutoencoderKL](https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/autoencoder_kl.py) as the VAE backbone. The T5 model encodes textual prompts and partially decoded latent representations, then predicts the next latent tokens. The VAE is used both to encode the initial style image and decode the predicted latent tokens back into an image.
|
36 |
+
|
37 |
+
- **Inputs**:
|
38 |
+
1. **Style Image**: A reference image, which Emuru encodes to capture its “style” or other visual characteristics.
|
39 |
+
2. **Style Text**: Text describing the style or context.
|
40 |
+
3. **Generation Text**: Text describing the content or object to generate.
|
41 |
+
|
42 |
+
- **Outputs**:
|
43 |
+
1. A synthesized image that reflects the fused style and text descriptions.
|
44 |
+
|
45 |
+
- **Tokenization**:
|
46 |
+
Emuru uses [AutoTokenizer](https://huggingface.co/docs/transformers/main_classes/tokenizer) to handle the text prompts, which adjusts the T5’s vocabulary and token embeddings accordingly.
|
47 |
+
|
48 |
+
- **Usage scenarios**:
|
49 |
+
- Stylized text-to-image generation
|
50 |
+
- Image manipulation or design prototyping based on textual descriptions
|
51 |
+
- Research or educational demonstrations of T5-based generative modeling
|
52 |
+
|
53 |
+
|
54 |
+
## How to use
|
55 |
+
|
56 |
+
Below is a minimal usage example in Python. You can load the model with `AutoModel.from_pretrained(...)` and simply call `.generate(...)` or `.generate_batch(...)` to create images.
|
57 |
+
|
58 |
+
```python
|
59 |
+
import torch
|
60 |
+
from PIL import Image
|
61 |
+
from transformers import AutoModel
|
62 |
+
from torchvision.transforms import functional as F
|
63 |
+
|
64 |
+
# 1. Load the model
|
65 |
+
model = AutoModel.from_pretrained("blowing-up-groundhogs/emuru")
|
66 |
+
model.cuda() # Move to GPU if available
|
67 |
+
|
68 |
+
# 2. Prepare your inputs
|
69 |
+
style_text = "A beautiful watercolor style"
|
70 |
+
gen_text = "A majestic mountain with a rainbow"
|
71 |
+
style_img = Image.open("my_style_image.png").convert("RGB")
|
72 |
+
|
73 |
+
# Convert the style image to a suitable tensor
|
74 |
+
style_img = F.to_tensor(style_img)
|
75 |
+
style_img = F.resize(style_img, (64, 64)) # Example resize
|
76 |
+
style_img = F.normalize(style_img, [0.5], [0.5]) # Normalize to [-1, 1]
|
77 |
+
style_img = style_img.unsqueeze(0).cuda()
|
78 |
+
|
79 |
+
# 3. Generate an image
|
80 |
+
generated_pil_image = model.generate(
|
81 |
+
style_text=style_text,
|
82 |
+
gen_text=gen_text,
|
83 |
+
style_img=style_img,
|
84 |
+
max_new_tokens=64
|
85 |
+
)
|
86 |
+
|
87 |
+
# 4. Save or display the result
|
88 |
+
generated_pil_image.save("generated_image.png")
|
89 |
+
```
|
90 |
+
|
91 |
+
### Batch Generation
|
92 |
+
You can also generate a batch of images if you have multiple style texts, generation texts, and style images:
|
93 |
+
|
94 |
+
```python
|
95 |
+
style_texts = ["Style text 1", "Style text 2"]
|
96 |
+
gen_texts = ["Gen text 1", "Gen text 2"]
|
97 |
+
style_imgs = torch.stack([img1, img2], dim=0) # shape: (batch_size, C, H, W)
|
98 |
+
lengths = [img1.size(-1), img2.size(-1)]
|
99 |
+
|
100 |
+
output_images = model.generate_batch(
|
101 |
+
style_texts=style_texts,
|
102 |
+
gen_texts=gen_texts,
|
103 |
+
style_imgs=style_imgs,
|
104 |
+
lengths=lengths,
|
105 |
+
max_new_tokens=64
|
106 |
+
)
|
107 |
+
|
108 |
+
# `output_images` is a list of PIL images
|
109 |
+
for idx, pil_img in enumerate(output_images):
|
110 |
+
pil_img.save(f"batch_generated_image_{idx}.png")
|
111 |
+
```
|
112 |
+
|
113 |
+
|
114 |
+
## Citation
|
115 |
+
|
116 |
+
If you use Emuru in your research or wish to refer to it, please cite:
|
117 |
+
|
118 |
+
```
|
119 |
+
...
|
120 |
+
```
|
121 |
+
|