|
import torch |
|
import torch.nn as nn |
|
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer |
|
from .configuration_emuru import EmuruConfig |
|
from diffusers import AutoencoderKL |
|
from einops.layers.torch import Rearrange |
|
from einops import repeat |
|
from torchvision.transforms import functional as F |
|
from typing import Optional, Tuple, List, Any |
|
from PIL import Image |
|
|
|
class Emuru(PreTrainedModel): |
|
""" |
|
Emuru is a conditional generative model that integrates a T5-based decoder with a VAE |
|
for image generation conditioned on text and style images. |
|
|
|
Attributes: |
|
config_class (Type): Configuration class for the model. |
|
tokenizer (AutoTokenizer): Tokenizer loaded from the provided tokenizer configuration. |
|
T5 (T5ForConditionalGeneration): T5 model adapted for conditional generation. |
|
sos (nn.Embedding): Start-of-sequence embedding. |
|
vae_to_t5 (nn.Linear): Linear projection from VAE latent space to T5 hidden space. |
|
t5_to_vae (nn.Linear): Linear projection from T5 hidden space back to VAE latent space. |
|
padding_token (nn.Parameter): Non-trainable parameter for padding tokens. |
|
padding_token_threshold (nn.Parameter): Non-trainable parameter for padding token threshold. |
|
vae (AutoencoderKL): Pre-trained Variational Autoencoder. |
|
query_rearrange (Rearrange): Layer to rearrange VAE latent representations for queries. |
|
z_rearrange (Rearrange): Layer to rearrange T5 outputs back to VAE latent dimensions. |
|
mse_criterion (nn.MSELoss): Mean squared error loss function. |
|
""" |
|
config_class = EmuruConfig |
|
|
|
def __init__(self, config: EmuruConfig) -> None: |
|
""" |
|
Initialize the Emuru model. |
|
|
|
Args: |
|
config (EmuruConfig): Configuration object containing model hyperparameters and paths. |
|
""" |
|
super().__init__(config) |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name_or_path) |
|
|
|
t5_config = T5Config.from_pretrained(config.t5_name_or_path) |
|
t5_config.vocab_size = len(self.tokenizer) |
|
self.T5 = T5ForConditionalGeneration(t5_config) |
|
self.T5.lm_head = nn.Identity() |
|
self.sos = nn.Embedding(1, t5_config.d_model) |
|
|
|
vae_latent_size = 8 * config.vae_channels * config.slices_per_query |
|
self.vae_to_t5 = nn.Linear(vae_latent_size, t5_config.d_model) |
|
self.t5_to_vae = nn.Linear(t5_config.d_model, vae_latent_size, bias=False) |
|
|
|
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False) |
|
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False) |
|
|
|
self.vae = AutoencoderKL.from_pretrained(config.vae_name_or_path) |
|
self.set_training(self.vae, False) |
|
|
|
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query) |
|
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query) |
|
|
|
self.mse_criterion = nn.MSELoss() |
|
self.init_weights() |
|
|
|
def set_training(self, model: nn.Module, training: bool) -> None: |
|
""" |
|
Set the training mode for a given model and freeze/unfreeze parameters accordingly. |
|
|
|
Args: |
|
model (nn.Module): The model to set the training mode for. |
|
training (bool): If True, set the model to training mode; otherwise, evaluation mode. |
|
""" |
|
model.train() if training else model.eval() |
|
for param in model.parameters(): |
|
param.requires_grad = training |
|
|
|
def forward( |
|
self, |
|
img: Optional[torch.Tensor] = None, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
noise: float = 0, |
|
**kwargs: Any |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Forward pass of the model. |
|
|
|
Args: |
|
img (Optional[torch.Tensor]): Input image tensor. |
|
input_ids (Optional[torch.Tensor]): Tokenized input IDs. |
|
attention_mask (Optional[torch.Tensor]): Attention mask for the inputs. |
|
noise (float): Amount of noise to add in image encoding. |
|
**kwargs: Additional arguments. |
|
|
|
Returns: |
|
Tuple containing: |
|
- mse_loss (torch.Tensor): Mean squared error loss. |
|
- pred_latent (torch.Tensor): Predicted latent representations. |
|
- z (torch.Tensor): Sampled latent vector from VAE. |
|
""" |
|
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise) |
|
|
|
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds) |
|
vae_latent = self.t5_to_vae(output.logits[:, :-1]) |
|
pred_latent = self.z_rearrange(vae_latent) |
|
|
|
mse_loss = self.mse_criterion(vae_latent, z_sequence) |
|
return mse_loss, pred_latent, z |
|
|
|
@torch.inference_mode() |
|
def generate( |
|
self, |
|
style_text: str, |
|
gen_text: str, |
|
style_img: torch.Tensor, |
|
**kwargs: Any |
|
) -> Image.Image: |
|
""" |
|
Generate an image by combining style and generation texts with a style image. |
|
|
|
Args: |
|
style_text (str): Style-related text prompt. |
|
gen_text (str): Generation-related text prompt. |
|
style_img (torch.Tensor): Style image tensor. Expected shape is either 3D or 4D. |
|
**kwargs: Additional keyword arguments. |
|
|
|
Returns: |
|
Image.Image: Generated image as a PIL image. |
|
""" |
|
if style_img.ndim == 3: |
|
style_img = style_img.unsqueeze(0) |
|
elif style_img.ndim == 4: |
|
pass |
|
else: |
|
raise ValueError('style_img must be 3D or 4D') |
|
|
|
texts = [style_text + ' ' + gen_text] |
|
imgs, _, img_ends = self._generate(texts=texts, imgs=style_img, **kwargs) |
|
imgs = (imgs + 1) / 2 |
|
return F.to_pil_image(imgs[0, ..., style_img.size(-1):img_ends.item()].detach().cpu()) |
|
|
|
@torch.inference_mode() |
|
def generate_batch( |
|
self, |
|
style_texts: List[str], |
|
gen_texts: List[str], |
|
style_imgs: torch.Tensor, |
|
lengths: List[int], |
|
**kwargs: Any |
|
) -> List[Image.Image]: |
|
""" |
|
Generate a batch of images from lists of style texts, generation texts, and style images. |
|
|
|
Args: |
|
style_texts (List[str]): List of style-related text prompts. |
|
gen_texts (List[str]): List of generation-related text prompts. |
|
style_imgs (torch.Tensor): Batch of style images (4D tensor). |
|
lengths (List[int]): List of lengths corresponding to each image. |
|
**kwargs: Additional keyword arguments. |
|
|
|
Returns: |
|
List[Image.Image]: List of generated images as PIL images. |
|
""" |
|
assert style_imgs.ndim == 4, 'style_imgs must be 4D' |
|
assert len(style_texts) == len(style_imgs), 'style_texts and style_imgs must have the same length' |
|
assert len(gen_texts) == len(style_imgs), 'gen_texts and style_imgs must have the same length' |
|
texts = [style_text + ' ' + gen_text for style_text, gen_text in zip(style_texts, gen_texts)] |
|
|
|
imgs, _, img_ends = self._generate(texts=texts, imgs=style_imgs, lengths=lengths, **kwargs) |
|
imgs = (imgs + 1) / 2 |
|
|
|
out_imgs = [] |
|
for i, end in enumerate(img_ends): |
|
start = lengths[i] |
|
out_imgs.append(F.to_pil_image(imgs[i, ..., start:end].detach().cpu())) |
|
return out_imgs |
|
|
|
def _generate( |
|
self, |
|
texts: Optional[List[str]] = None, |
|
imgs: Optional[torch.Tensor] = None, |
|
lengths: Optional[List[int]] = None, |
|
input_ids: Optional[torch.Tensor] = None, |
|
z_sequence: Optional[torch.Tensor] = None, |
|
max_new_tokens: int = 256, |
|
stopping_criteria: str = 'latent', |
|
stopping_after: int = 10, |
|
stopping_patience: int = 1 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Internal generation routine that combines textual and visual inputs to iteratively generate |
|
latent representations and decode them into images. |
|
|
|
Args: |
|
texts (Optional[List[str]]): List of text prompts. |
|
imgs (Optional[torch.Tensor]): Input image tensor. |
|
lengths (Optional[List[int]]): Desired lengths for each image in latent space. |
|
input_ids (Optional[torch.Tensor]): Tokenized input IDs. |
|
z_sequence (Optional[torch.Tensor]): Precomputed latent sequence. |
|
max_new_tokens (int): Maximum tokens to generate. |
|
stopping_criteria (str): Criteria for stopping ('latent' or 'none'). |
|
stopping_after (int): Number of tokens to check for stopping condition. |
|
stopping_patience (int): Patience parameter for stopping condition. |
|
|
|
Returns: |
|
Tuple containing: |
|
- imgs (torch.Tensor): Generated images. |
|
- canvas_sequence (torch.Tensor): Generated latent canvas sequence. |
|
- img_ends (torch.Tensor): End indices for each generated image. |
|
""" |
|
assert texts is not None or input_ids is not None, 'Either texts or input_ids must be provided' |
|
assert imgs is not None or z_sequence is not None, 'Either imgs or z_sequence must be provided' |
|
|
|
if input_ids is None: |
|
input_ids = self.tokenizer(texts, return_tensors='pt', padding=True).input_ids |
|
input_ids = input_ids.to(self.device) |
|
|
|
if z_sequence is None: |
|
_, z_sequence, _ = self._img_encode(imgs) |
|
|
|
if lengths is None: |
|
lengths = [imgs.size(-1)] * imgs.size(0) |
|
lengths = torch.tensor(lengths).to(self.device) |
|
lengths = (lengths / 8).ceil().int() |
|
|
|
z_sequence_mask = torch.zeros((z_sequence.size(0), lengths.max() + max_new_tokens)) |
|
z_sequence_mask = z_sequence_mask.bool().to(self.device) |
|
for i, l in enumerate(lengths): |
|
z_sequence_mask[i, :l] = True |
|
|
|
canvas_sequence = z_sequence[:, :lengths.min()] |
|
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0)) |
|
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0)) |
|
seq_stops = torch.ones(z_sequence.size(0), dtype=torch.int) * -1 |
|
|
|
for token_idx in range(lengths.min(), lengths.max() + max_new_tokens): |
|
if len(z_sequence) == 0: |
|
decoder_inputs_embeds = sos |
|
else: |
|
decoder_inputs_embeds = self.vae_to_t5(canvas_sequence) |
|
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1) |
|
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds) |
|
vae_latent = self.t5_to_vae(output.logits[:, -1:]) |
|
|
|
mask_slice = z_sequence_mask[:, token_idx].unsqueeze(-1) |
|
if token_idx < z_sequence.size(1): |
|
seq_slice = torch.where(mask_slice, z_sequence[:, token_idx], vae_latent[:, 0]) |
|
else: |
|
seq_slice = vae_latent[:, 0] |
|
canvas_sequence = torch.cat([canvas_sequence, seq_slice.unsqueeze(1)], dim=1) |
|
|
|
if stopping_criteria == 'latent': |
|
similarity = torch.nn.functional.cosine_similarity(canvas_sequence, pad_token, dim=-1) |
|
windows = (similarity > self.padding_token_threshold).unfold(1, min(stopping_after, similarity.size(-1)), 1) |
|
window_sums = windows.to(torch.int).sum(dim=2) |
|
|
|
for i in range(similarity.size(0)): |
|
idx = (window_sums[i] > (stopping_after - stopping_patience)).nonzero(as_tuple=True)[0] |
|
if idx.numel() > 0: |
|
seq_stops[i] = idx[0].item() |
|
|
|
if torch.all(seq_stops >= 0): |
|
break |
|
elif stopping_criteria == 'none': |
|
pass |
|
|
|
imgs = torch.clamp(self.vae.decode(self.z_rearrange(canvas_sequence)).sample, -1, 1) |
|
return imgs, canvas_sequence, seq_stops * 8 |
|
|
|
def _img_encode( |
|
self, |
|
img: torch.Tensor, |
|
noise: float = 0 |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Encode the input image into a latent representation using the VAE. |
|
|
|
Args: |
|
img (torch.Tensor): Input image tensor. |
|
noise (float): Standard deviation of noise to add to the latent sequence. |
|
|
|
Returns: |
|
Tuple containing: |
|
- decoder_inputs_embeds (torch.Tensor): Embeddings to be used as T5 decoder inputs. |
|
- z_sequence (torch.Tensor): Rearranged latent sequence from the VAE. |
|
- z (torch.Tensor): Sampled latent vector from the VAE. |
|
""" |
|
posterior = self.vae.encode(img.float()) |
|
z = posterior.latent_dist.sample() |
|
z_sequence = self.query_rearrange(z) |
|
|
|
noise_sequence = z_sequence |
|
if noise > 0: |
|
noise_sequence = z_sequence + torch.randn_like(z_sequence) * noise |
|
|
|
decoder_inputs_embeds = self.vae_to_t5(noise_sequence) |
|
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=decoder_inputs_embeds.size(0)) |
|
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1) |
|
return decoder_inputs_embeds, z_sequence, z |
|
|
|
def compute_padding_token(self) -> None: |
|
""" |
|
Compute and update the padding token. |
|
|
|
Raises: |
|
NotImplementedError: This method must be implemented. |
|
""" |
|
raise NotImplementedError("compute_padding_token not implemented") |
|
|
|
def compute_padding_token_threshold(self) -> None: |
|
""" |
|
Compute and update the padding token threshold. |
|
|
|
Raises: |
|
NotImplementedError: This method must be implemented. |
|
""" |
|
raise NotImplementedError("compute_padding_token_threshold not implemented") |
|
|