emuru / modeling_emuru.py
Vittorio Pippi
Remove type hint for config parameter in Emuru model initializer
d577eed
raw
history blame
13.9 kB
import torch
import torch.nn as nn
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer
from configuration_emuru import EmuruConfig
from diffusers import AutoencoderKL
from einops.layers.torch import Rearrange
from einops import repeat
from torchvision.transforms import functional as F
from typing import Optional, Tuple, List, Any
from PIL import Image
class Emuru(PreTrainedModel):
"""
Emuru is a conditional generative model that integrates a T5-based decoder with a VAE
for image generation conditioned on text and style images.
Attributes:
config_class (Type): Configuration class for the model.
tokenizer (AutoTokenizer): Tokenizer loaded from the provided tokenizer configuration.
T5 (T5ForConditionalGeneration): T5 model adapted for conditional generation.
sos (nn.Embedding): Start-of-sequence embedding.
vae_to_t5 (nn.Linear): Linear projection from VAE latent space to T5 hidden space.
t5_to_vae (nn.Linear): Linear projection from T5 hidden space back to VAE latent space.
padding_token (nn.Parameter): Non-trainable parameter for padding tokens.
padding_token_threshold (nn.Parameter): Non-trainable parameter for padding token threshold.
vae (AutoencoderKL): Pre-trained Variational Autoencoder.
query_rearrange (Rearrange): Layer to rearrange VAE latent representations for queries.
z_rearrange (Rearrange): Layer to rearrange T5 outputs back to VAE latent dimensions.
mse_criterion (nn.MSELoss): Mean squared error loss function.
"""
config_class = EmuruConfig
def __init__(self, config) -> None:
"""
Initialize the Emuru model.
Args:
config (EmuruConfig): Configuration object containing model hyperparameters and paths.
"""
super().__init__(config)
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_config)
t5_config = T5Config.from_pretrained(config.t5_config)
t5_config.vocab_size = len(self.tokenizer)
self.T5 = T5ForConditionalGeneration(t5_config)
self.T5.lm_head = nn.Identity()
self.sos = nn.Embedding(1, t5_config.d_model)
vae_latent_size = 8 * config.vae_channels * config.slices_per_query
self.vae_to_t5 = nn.Linear(vae_latent_size, t5_config.d_model)
self.t5_to_vae = nn.Linear(t5_config.d_model, vae_latent_size, bias=False)
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False)
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False)
self.vae = AutoencoderKL.from_pretrained(config.vae_config)
self.set_training(self.vae, False)
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query)
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query)
self.mse_criterion = nn.MSELoss()
self.init_weights()
def set_training(self, model: nn.Module, training: bool) -> None:
"""
Set the training mode for a given model and freeze/unfreeze parameters accordingly.
Args:
model (nn.Module): The model to set the training mode for.
training (bool): If True, set the model to training mode; otherwise, evaluation mode.
"""
model.train() if training else model.eval()
for param in model.parameters():
param.requires_grad = training
def forward(
self,
img: Optional[torch.Tensor] = None,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
noise: float = 0,
**kwargs: Any
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Forward pass of the model.
Args:
img (Optional[torch.Tensor]): Input image tensor.
input_ids (Optional[torch.Tensor]): Tokenized input IDs.
attention_mask (Optional[torch.Tensor]): Attention mask for the inputs.
noise (float): Amount of noise to add in image encoding.
**kwargs: Additional arguments.
Returns:
Tuple containing:
- mse_loss (torch.Tensor): Mean squared error loss.
- pred_latent (torch.Tensor): Predicted latent representations.
- z (torch.Tensor): Sampled latent vector from VAE.
"""
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise)
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds)
vae_latent = self.t5_to_vae(output.logits[:, :-1])
pred_latent = self.z_rearrange(vae_latent)
mse_loss = self.mse_criterion(vae_latent, z_sequence)
return mse_loss, pred_latent, z
def generate(
self,
style_text: str,
gen_text: str,
style_img: torch.Tensor,
**kwargs: Any
) -> Image.Image:
"""
Generate an image by combining style and generation texts with a style image.
Args:
style_text (str): Style-related text prompt.
gen_text (str): Generation-related text prompt.
style_img (torch.Tensor): Style image tensor. Expected shape is either 3D or 4D.
**kwargs: Additional keyword arguments.
Returns:
Image.Image: Generated image as a PIL image.
"""
if style_img.ndim == 3:
style_img = style_img.unsqueeze(0)
elif style_img.ndim == 4:
pass
else:
raise ValueError('style_img must be 3D or 4D')
texts = [style_text + ' ' + gen_text]
imgs, _, img_ends = self._generate(texts=texts, imgs=style_img, **kwargs)
imgs = (imgs + 1) / 2
return F.to_pil_image(imgs[0, ..., style_img.size(-1):img_ends.item()].detach().cpu())
def generate_batch(
self,
style_texts: List[str],
gen_texts: List[str],
style_imgs: torch.Tensor,
lengths: List[int],
**kwargs: Any
) -> List[Image.Image]:
"""
Generate a batch of images from lists of style texts, generation texts, and style images.
Args:
style_texts (List[str]): List of style-related text prompts.
gen_texts (List[str]): List of generation-related text prompts.
style_imgs (torch.Tensor): Batch of style images (4D tensor).
lengths (List[int]): List of lengths corresponding to each image.
**kwargs: Additional keyword arguments.
Returns:
List[Image.Image]: List of generated images as PIL images.
"""
assert style_imgs.ndim == 4, 'style_imgs must be 4D'
assert len(style_texts) == len(style_imgs), 'style_texts and style_imgs must have the same length'
assert len(gen_texts) == len(style_imgs), 'gen_texts and style_imgs must have the same length'
texts = [style_text + ' ' + gen_text for style_text, gen_text in zip(style_texts, gen_texts)]
imgs, _, img_ends = self._generate(texts=texts, imgs=style_imgs, lengths=lengths, **kwargs)
imgs = (imgs + 1) / 2
out_imgs = []
for i, end in enumerate(img_ends):
start = lengths[i]
out_imgs.append(F.to_pil_image(imgs[i, ..., start:end].detach().cpu()))
return out_imgs
def _generate(
self,
texts: Optional[List[str]] = None,
imgs: Optional[torch.Tensor] = None,
lengths: Optional[List[int]] = None,
input_ids: Optional[torch.Tensor] = None,
z_sequence: Optional[torch.Tensor] = None,
max_new_tokens: int = 256,
stopping_criteria: str = 'latent',
stopping_after: int = 10,
stopping_patience: int = 1
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Internal generation routine that combines textual and visual inputs to iteratively generate
latent representations and decode them into images.
Args:
texts (Optional[List[str]]): List of text prompts.
imgs (Optional[torch.Tensor]): Input image tensor.
lengths (Optional[List[int]]): Desired lengths for each image in latent space.
input_ids (Optional[torch.Tensor]): Tokenized input IDs.
z_sequence (Optional[torch.Tensor]): Precomputed latent sequence.
max_new_tokens (int): Maximum tokens to generate.
stopping_criteria (str): Criteria for stopping ('latent' or 'none').
stopping_after (int): Number of tokens to check for stopping condition.
stopping_patience (int): Patience parameter for stopping condition.
Returns:
Tuple containing:
- imgs (torch.Tensor): Generated images.
- canvas_sequence (torch.Tensor): Generated latent canvas sequence.
- img_ends (torch.Tensor): End indices for each generated image.
"""
assert texts is not None or input_ids is not None, 'Either texts or input_ids must be provided'
assert imgs is not None or z_sequence is not None, 'Either imgs or z_sequence must be provided'
if input_ids is None:
input_ids = self.tokenizer(texts, return_tensors='pt', padding=True).input_ids
input_ids = input_ids.to(self.device)
if z_sequence is None:
_, z_sequence, _ = self._img_encode(imgs)
if lengths is None:
lengths = [imgs.size(-1)] * imgs.size(0)
lengths = torch.tensor(lengths).to(self.device)
lengths = (lengths / 8).ceil().int()
z_sequence_mask = torch.zeros((z_sequence.size(0), lengths.max() + max_new_tokens))
z_sequence_mask = z_sequence_mask.bool().to(self.device)
for i, l in enumerate(lengths):
z_sequence_mask[i, :l] = True
canvas_sequence = z_sequence[:, :lengths.min()]
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0))
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0))
seq_stops = torch.ones(z_sequence.size(0), dtype=torch.int) * -1
for token_idx in range(lengths.min(), lengths.max() + max_new_tokens):
if len(z_sequence) == 0:
decoder_inputs_embeds = sos
else:
decoder_inputs_embeds = self.vae_to_t5(canvas_sequence)
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds)
vae_latent = self.t5_to_vae(output.logits[:, -1:])
mask_slice = z_sequence_mask[:, token_idx].unsqueeze(-1)
if token_idx < z_sequence.size(1):
seq_slice = torch.where(mask_slice, z_sequence[:, token_idx], vae_latent[:, 0])
else:
seq_slice = vae_latent[:, 0]
canvas_sequence = torch.cat([canvas_sequence, seq_slice.unsqueeze(1)], dim=1)
if stopping_criteria == 'latent':
similarity = torch.nn.functional.cosine_similarity(canvas_sequence, pad_token, dim=-1)
windows = (similarity > self.padding_token_threshold).unfold(1, stopping_after, 1)
window_sums = windows.to(torch.int).sum(dim=2)
for i in range(similarity.size(0)):
idx = (window_sums[i] > (stopping_after - stopping_patience)).nonzero(as_tuple=True)[0]
if idx.numel() > 0:
seq_stops[i] = idx[0].item()
if torch.all(seq_stops >= 0):
break
elif stopping_criteria == 'none':
pass
imgs = torch.clamp(self.vae.decode(self.z_rearrange(canvas_sequence)).sample, -1, 1)
return imgs, canvas_sequence, seq_stops * 8
def _img_encode(
self,
img: torch.Tensor,
noise: float = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Encode the input image into a latent representation using the VAE.
Args:
img (torch.Tensor): Input image tensor.
noise (float): Standard deviation of noise to add to the latent sequence.
Returns:
Tuple containing:
- decoder_inputs_embeds (torch.Tensor): Embeddings to be used as T5 decoder inputs.
- z_sequence (torch.Tensor): Rearranged latent sequence from the VAE.
- z (torch.Tensor): Sampled latent vector from the VAE.
"""
posterior = self.vae.encode(img.float())
z = posterior.latent_dist.sample()
z_sequence = self.query_rearrange(z)
noise_sequence = z_sequence
if noise > 0:
noise_sequence = z_sequence + torch.randn_like(z_sequence) * noise
decoder_inputs_embeds = self.vae_to_t5(noise_sequence)
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=decoder_inputs_embeds.size(0))
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
return decoder_inputs_embeds, z_sequence, z
def compute_padding_token(self) -> None:
"""
Compute and update the padding token.
Raises:
NotImplementedError: This method must be implemented.
"""
raise NotImplementedError("compute_padding_token not implemented")
def compute_padding_token_threshold(self) -> None:
"""
Compute and update the padding token threshold.
Raises:
NotImplementedError: This method must be implemented.
"""
raise NotImplementedError("compute_padding_token_threshold not implemented")