Vittorio Pippi
Enhance README with image loading function and update model usage; add inference mode to generate methods
605e556
import torch | |
import torch.nn as nn | |
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer | |
from .configuration_emuru import EmuruConfig | |
from diffusers import AutoencoderKL | |
from einops.layers.torch import Rearrange | |
from einops import repeat | |
from torchvision.transforms import functional as F | |
from typing import Optional, Tuple, List, Any | |
from PIL import Image | |
class Emuru(PreTrainedModel): | |
""" | |
Emuru is a conditional generative model that integrates a T5-based decoder with a VAE | |
for image generation conditioned on text and style images. | |
Attributes: | |
config_class (Type): Configuration class for the model. | |
tokenizer (AutoTokenizer): Tokenizer loaded from the provided tokenizer configuration. | |
T5 (T5ForConditionalGeneration): T5 model adapted for conditional generation. | |
sos (nn.Embedding): Start-of-sequence embedding. | |
vae_to_t5 (nn.Linear): Linear projection from VAE latent space to T5 hidden space. | |
t5_to_vae (nn.Linear): Linear projection from T5 hidden space back to VAE latent space. | |
padding_token (nn.Parameter): Non-trainable parameter for padding tokens. | |
padding_token_threshold (nn.Parameter): Non-trainable parameter for padding token threshold. | |
vae (AutoencoderKL): Pre-trained Variational Autoencoder. | |
query_rearrange (Rearrange): Layer to rearrange VAE latent representations for queries. | |
z_rearrange (Rearrange): Layer to rearrange T5 outputs back to VAE latent dimensions. | |
mse_criterion (nn.MSELoss): Mean squared error loss function. | |
""" | |
config_class = EmuruConfig | |
def __init__(self, config: EmuruConfig) -> None: | |
""" | |
Initialize the Emuru model. | |
Args: | |
config (EmuruConfig): Configuration object containing model hyperparameters and paths. | |
""" | |
super().__init__(config) | |
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name_or_path) | |
t5_config = T5Config.from_pretrained(config.t5_name_or_path) | |
t5_config.vocab_size = len(self.tokenizer) | |
self.T5 = T5ForConditionalGeneration(t5_config) | |
self.T5.lm_head = nn.Identity() | |
self.sos = nn.Embedding(1, t5_config.d_model) | |
vae_latent_size = 8 * config.vae_channels * config.slices_per_query | |
self.vae_to_t5 = nn.Linear(vae_latent_size, t5_config.d_model) | |
self.t5_to_vae = nn.Linear(t5_config.d_model, vae_latent_size, bias=False) | |
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False) | |
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False) | |
self.vae = AutoencoderKL.from_pretrained(config.vae_name_or_path) | |
self.set_training(self.vae, False) | |
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query) | |
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query) | |
self.mse_criterion = nn.MSELoss() | |
self.init_weights() | |
def set_training(self, model: nn.Module, training: bool) -> None: | |
""" | |
Set the training mode for a given model and freeze/unfreeze parameters accordingly. | |
Args: | |
model (nn.Module): The model to set the training mode for. | |
training (bool): If True, set the model to training mode; otherwise, evaluation mode. | |
""" | |
model.train() if training else model.eval() | |
for param in model.parameters(): | |
param.requires_grad = training | |
def forward( | |
self, | |
img: Optional[torch.Tensor] = None, | |
input_ids: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
noise: float = 0, | |
**kwargs: Any | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Forward pass of the model. | |
Args: | |
img (Optional[torch.Tensor]): Input image tensor. | |
input_ids (Optional[torch.Tensor]): Tokenized input IDs. | |
attention_mask (Optional[torch.Tensor]): Attention mask for the inputs. | |
noise (float): Amount of noise to add in image encoding. | |
**kwargs: Additional arguments. | |
Returns: | |
Tuple containing: | |
- mse_loss (torch.Tensor): Mean squared error loss. | |
- pred_latent (torch.Tensor): Predicted latent representations. | |
- z (torch.Tensor): Sampled latent vector from VAE. | |
""" | |
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise) | |
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds) | |
vae_latent = self.t5_to_vae(output.logits[:, :-1]) | |
pred_latent = self.z_rearrange(vae_latent) | |
mse_loss = self.mse_criterion(vae_latent, z_sequence) | |
return mse_loss, pred_latent, z | |
def generate( | |
self, | |
style_text: str, | |
gen_text: str, | |
style_img: torch.Tensor, | |
**kwargs: Any | |
) -> Image.Image: | |
""" | |
Generate an image by combining style and generation texts with a style image. | |
Args: | |
style_text (str): Style-related text prompt. | |
gen_text (str): Generation-related text prompt. | |
style_img (torch.Tensor): Style image tensor. Expected shape is either 3D or 4D. | |
**kwargs: Additional keyword arguments. | |
Returns: | |
Image.Image: Generated image as a PIL image. | |
""" | |
if style_img.ndim == 3: | |
style_img = style_img.unsqueeze(0) | |
elif style_img.ndim == 4: | |
pass | |
else: | |
raise ValueError('style_img must be 3D or 4D') | |
texts = [style_text + ' ' + gen_text] | |
imgs, _, img_ends = self._generate(texts=texts, imgs=style_img, **kwargs) | |
imgs = (imgs + 1) / 2 | |
return F.to_pil_image(imgs[0, ..., style_img.size(-1):img_ends.item()].detach().cpu()) | |
def generate_batch( | |
self, | |
style_texts: List[str], | |
gen_texts: List[str], | |
style_imgs: torch.Tensor, | |
lengths: List[int], | |
**kwargs: Any | |
) -> List[Image.Image]: | |
""" | |
Generate a batch of images from lists of style texts, generation texts, and style images. | |
Args: | |
style_texts (List[str]): List of style-related text prompts. | |
gen_texts (List[str]): List of generation-related text prompts. | |
style_imgs (torch.Tensor): Batch of style images (4D tensor). | |
lengths (List[int]): List of lengths corresponding to each image. | |
**kwargs: Additional keyword arguments. | |
Returns: | |
List[Image.Image]: List of generated images as PIL images. | |
""" | |
assert style_imgs.ndim == 4, 'style_imgs must be 4D' | |
assert len(style_texts) == len(style_imgs), 'style_texts and style_imgs must have the same length' | |
assert len(gen_texts) == len(style_imgs), 'gen_texts and style_imgs must have the same length' | |
texts = [style_text + ' ' + gen_text for style_text, gen_text in zip(style_texts, gen_texts)] | |
imgs, _, img_ends = self._generate(texts=texts, imgs=style_imgs, lengths=lengths, **kwargs) | |
imgs = (imgs + 1) / 2 | |
out_imgs = [] | |
for i, end in enumerate(img_ends): | |
start = lengths[i] | |
out_imgs.append(F.to_pil_image(imgs[i, ..., start:end].detach().cpu())) | |
return out_imgs | |
def _generate( | |
self, | |
texts: Optional[List[str]] = None, | |
imgs: Optional[torch.Tensor] = None, | |
lengths: Optional[List[int]] = None, | |
input_ids: Optional[torch.Tensor] = None, | |
z_sequence: Optional[torch.Tensor] = None, | |
max_new_tokens: int = 256, | |
stopping_criteria: str = 'latent', | |
stopping_after: int = 10, | |
stopping_patience: int = 1 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Internal generation routine that combines textual and visual inputs to iteratively generate | |
latent representations and decode them into images. | |
Args: | |
texts (Optional[List[str]]): List of text prompts. | |
imgs (Optional[torch.Tensor]): Input image tensor. | |
lengths (Optional[List[int]]): Desired lengths for each image in latent space. | |
input_ids (Optional[torch.Tensor]): Tokenized input IDs. | |
z_sequence (Optional[torch.Tensor]): Precomputed latent sequence. | |
max_new_tokens (int): Maximum tokens to generate. | |
stopping_criteria (str): Criteria for stopping ('latent' or 'none'). | |
stopping_after (int): Number of tokens to check for stopping condition. | |
stopping_patience (int): Patience parameter for stopping condition. | |
Returns: | |
Tuple containing: | |
- imgs (torch.Tensor): Generated images. | |
- canvas_sequence (torch.Tensor): Generated latent canvas sequence. | |
- img_ends (torch.Tensor): End indices for each generated image. | |
""" | |
assert texts is not None or input_ids is not None, 'Either texts or input_ids must be provided' | |
assert imgs is not None or z_sequence is not None, 'Either imgs or z_sequence must be provided' | |
if input_ids is None: | |
input_ids = self.tokenizer(texts, return_tensors='pt', padding=True).input_ids | |
input_ids = input_ids.to(self.device) | |
if z_sequence is None: | |
_, z_sequence, _ = self._img_encode(imgs) | |
if lengths is None: | |
lengths = [imgs.size(-1)] * imgs.size(0) | |
lengths = torch.tensor(lengths).to(self.device) | |
lengths = (lengths / 8).ceil().int() | |
z_sequence_mask = torch.zeros((z_sequence.size(0), lengths.max() + max_new_tokens)) | |
z_sequence_mask = z_sequence_mask.bool().to(self.device) | |
for i, l in enumerate(lengths): | |
z_sequence_mask[i, :l] = True | |
canvas_sequence = z_sequence[:, :lengths.min()] | |
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=input_ids.size(0)) | |
pad_token = repeat(self.padding_token, '1 d -> b 1 d', b=input_ids.size(0)) | |
seq_stops = torch.ones(z_sequence.size(0), dtype=torch.int) * -1 | |
for token_idx in range(lengths.min(), lengths.max() + max_new_tokens): | |
if len(z_sequence) == 0: | |
decoder_inputs_embeds = sos | |
else: | |
decoder_inputs_embeds = self.vae_to_t5(canvas_sequence) | |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1) | |
output = self.T5(input_ids, decoder_inputs_embeds=decoder_inputs_embeds) | |
vae_latent = self.t5_to_vae(output.logits[:, -1:]) | |
mask_slice = z_sequence_mask[:, token_idx].unsqueeze(-1) | |
if token_idx < z_sequence.size(1): | |
seq_slice = torch.where(mask_slice, z_sequence[:, token_idx], vae_latent[:, 0]) | |
else: | |
seq_slice = vae_latent[:, 0] | |
canvas_sequence = torch.cat([canvas_sequence, seq_slice.unsqueeze(1)], dim=1) | |
if stopping_criteria == 'latent': | |
similarity = torch.nn.functional.cosine_similarity(canvas_sequence, pad_token, dim=-1) | |
windows = (similarity > self.padding_token_threshold).unfold(1, stopping_after, 1) | |
window_sums = windows.to(torch.int).sum(dim=2) | |
for i in range(similarity.size(0)): | |
idx = (window_sums[i] > (stopping_after - stopping_patience)).nonzero(as_tuple=True)[0] | |
if idx.numel() > 0: | |
seq_stops[i] = idx[0].item() | |
if torch.all(seq_stops >= 0): | |
break | |
elif stopping_criteria == 'none': | |
pass | |
imgs = torch.clamp(self.vae.decode(self.z_rearrange(canvas_sequence)).sample, -1, 1) | |
return imgs, canvas_sequence, seq_stops * 8 | |
def _img_encode( | |
self, | |
img: torch.Tensor, | |
noise: float = 0 | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
""" | |
Encode the input image into a latent representation using the VAE. | |
Args: | |
img (torch.Tensor): Input image tensor. | |
noise (float): Standard deviation of noise to add to the latent sequence. | |
Returns: | |
Tuple containing: | |
- decoder_inputs_embeds (torch.Tensor): Embeddings to be used as T5 decoder inputs. | |
- z_sequence (torch.Tensor): Rearranged latent sequence from the VAE. | |
- z (torch.Tensor): Sampled latent vector from the VAE. | |
""" | |
posterior = self.vae.encode(img.float()) | |
z = posterior.latent_dist.sample() | |
z_sequence = self.query_rearrange(z) | |
noise_sequence = z_sequence | |
if noise > 0: | |
noise_sequence = z_sequence + torch.randn_like(z_sequence) * noise | |
decoder_inputs_embeds = self.vae_to_t5(noise_sequence) | |
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=decoder_inputs_embeds.size(0)) | |
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1) | |
return decoder_inputs_embeds, z_sequence, z | |
def compute_padding_token(self) -> None: | |
""" | |
Compute and update the padding token. | |
Raises: | |
NotImplementedError: This method must be implemented. | |
""" | |
raise NotImplementedError("compute_padding_token not implemented") | |
def compute_padding_token_threshold(self) -> None: | |
""" | |
Compute and update the padding token threshold. | |
Raises: | |
NotImplementedError: This method must be implemented. | |
""" | |
raise NotImplementedError("compute_padding_token_threshold not implemented") | |