emuru / modeling_emuru.py
Vittorio Pippi
Initial commit
0021de3
raw
history blame
4.08 kB
# modeling_emuru.py
import torch
import torch.nn as nn
from transformers import PreTrainedModel, T5ForConditionalGeneration, T5Config, AutoTokenizer
from .configuration_emuru import EmuruConfig
from diffusers import AutoencoderKL
from einops.layers.torch import Rearrange
from einops import rearrange, repeat
class Emuru(PreTrainedModel):
config_class = EmuruConfig # Link to your configuration
def __init__(self, config):
super().__init__(config)
# Initialize the tokenizer (if you want it as part of your model)
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_config)
# Load T5 using the provided filename from config
t5_config = T5Config.from_pretrained(config.t5_config)
t5_config.vocab_size = len(self.tokenizer)
self.T5 = T5ForConditionalGeneration(t5_config)
self.T5.lm_head = nn.Identity()
self.sos = nn.Embedding(1, t5_config.d_model)
vae_latent_size = 8 * config.vae_channels * config.slices_per_query
self.vae_to_t5 = nn.Linear(vae_latent_size, t5_config.d_model)
self.t5_to_vae = nn.Linear(t5_config.d_model, vae_latent_size, bias=False)
self.padding_token = nn.Parameter(torch.empty((1, vae_latent_size)), requires_grad=False)
self.padding_token_threshold = nn.Parameter(torch.empty(1), requires_grad=False)
# Load VAE
self.vae = AutoencoderKL.from_pretrained(config.vae_config)
self.set_training(self.vae, False)
# Define the rearrange layers
self.query_rearrange = Rearrange('b c h (w q) -> b w (q c h)', q=config.slices_per_query)
self.z_rearrange = Rearrange('b w (q c h) -> b c h (w q)', c=config.vae_channels, q=config.slices_per_query)
# Define your loss functions
self.mse_criterion = nn.MSELoss()
# Initialize weights following Hugging Face conventions (if needed)
self.init_weights()
def set_training(self, model, training):
model.train() if training else model.eval()
for param in model.parameters():
param.requires_grad = training
# --- Implement the rest of your methods ---
# For example, _img_encode, forward, generate, etc.
# You can largely port your existing code here, making sure that:
# - The forward method returns a dictionary with your losses and outputs.
# - You use the Hugging Face methods for saving/loading weights.
def forward(self, img=None, input_ids=None, attention_mask=None, noise=0, **kwargs):
decoder_inputs_embeds, z_sequence, z = self._img_encode(img, noise)
output = self.T5(input_ids, attention_mask=attention_mask, decoder_inputs_embeds=decoder_inputs_embeds)
vae_latent = self.t5_to_vae(output.logits[:, :-1])
pred_latent = self.z_rearrange(vae_latent)
mse_loss = self.mse_criterion(vae_latent, z_sequence)
return mse_loss, pred_latent, z
def generate(self, text=None, img=None, max_length=128, noise=0):
# Your generate implementation (port over from your original code)
# Make sure to call self._img_encode(img, noise) and use self.T5, etc.
...
def _img_encode(self, img, noise=0):
posterior = self.vae.encode(img.float())
z = posterior.latent_dist.sample()
z_sequence = self.query_rearrange(z)
noise_sequence = z_sequence
if noise > 0:
noise_sequence = z_sequence + torch.randn_like(z_sequence) * noise
decoder_inputs_embeds = self.query_emb(noise_sequence)
sos = repeat(self.sos.weight, '1 d -> b 1 d', b=decoder_inputs_embeds.size(0))
decoder_inputs_embeds = torch.cat([sos, decoder_inputs_embeds], dim=1)
return decoder_inputs_embeds, z_sequence, z
def compute_padding_token(self):
# Your compute_padding_token implementation (port over from your original code)
...
def compute_padding_token_threshold(self):
# Your compute_padding_token_threshold implementation (port over from your original code)
...