unsloth_test_alpaca(一个unsloth炼丹的小例子)
Community Article
Published
March 13, 2025
准备数据
先把需要的数据转到alpaca的格式,并且重新整理
from datasets import load_dataset, Dataset
# Load the dataset and select only the required columns
dataset = load_dataset("./Chinese-DeepSeek-R1-Distill-data-110k", split="train")
dataset = dataset.select_columns(["input", "content", "reasoning_content"])
new_data = {
"input": dataset["input"],
"instruction": ["深度思索"] * len(dataset),
"output": ['<think>' + rc + '</think>' + c for rc, c in zip(dataset["reasoning_content"], dataset["content"])]
}
new_dataset = Dataset.from_dict(new_data)
new_dataset.save_to_disk("Chinese-DeepSeek-R1-Distill-data-110k-alpaca")
开始炼丹
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# 4bit pre quantized models we support for 4x faster downloading + no OOMs.
fourbit_models = [
"unsloth/Meta-Llama-3.1-8B-bnb-4bit", # Llama-3.1 2x faster
"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit",
"unsloth/Meta-Llama-3.1-70B-bnb-4bit",
"unsloth/Meta-Llama-3.1-405B-bnb-4bit", # 4bit for 405b!
"unsloth/Mistral-Small-Instruct-2409", # Mistral 22b 2x faster!
"unsloth/mistral-7b-instruct-v0.3-bnb-4bit",
"unsloth/Phi-3.5-mini-instruct", # Phi-3.5 2x faster!
"unsloth/Phi-3-medium-4k-instruct",
"unsloth/gemma-2-9b-bnb-4bit",
"unsloth/gemma-2-27b-bnb-4bit", # Gemma 2x faster!
"unsloth/Llama-3.2-1B-bnb-4bit", # NEW! Llama 3.2 models
"unsloth/Llama-3.2-1B-Instruct-bnb-4bit",
"unsloth/Llama-3.2-3B-bnb-4bit",
"unsloth/Llama-3.2-3B-Instruct-bnb-4bit",
"unsloth/Llama-3.3-70B-Instruct-bnb-4bit" # NEW! Llama 3.3 70B!
] # More models at https://huggingface.co/unsloth
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "./Llama-3.2-1B-Instruct-unsloth-bnb-4bit", # or choose "unsloth/Llama-3.2-1B-Instruct"
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
model = FastLanguageModel.get_peft_model(
model,
r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
# [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
random_state = 3407,
use_rslora = False, # We support rank stabilized LoRA
loftq_config = None, # And LoftQ
)
from unsloth.chat_templates import get_chat_template
tokenizer = get_chat_template(
tokenizer,
chat_template = "llama-3.2",
)
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
# Must add EOS_TOKEN, otherwise your generation will go on forever!
text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN
texts.append(text)
return { "text" : texts, }
pass
from datasets import load_dataset
dataset = load_dataset("aifeifei798/Chinese-DeepSeek-R1-Distill-data-110k-alpaca", split = "train")
dataset = dataset.map(formatting_prompts_func, batched = True,)
print(dataset[5])
from trl import SFTTrainer
from transformers import TrainingArguments, DataCollatorForSeq2Seq
from unsloth import is_bfloat16_supported
trainer = SFTTrainer(
model = model,
tokenizer = tokenizer,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
dataset_num_proc = 16,
packing = False, # Can make training 5x faster for short sequences.
args = TrainingArguments(
per_device_train_batch_size = 1,
gradient_accumulation_steps = 4,
warmup_steps = 5,
# num_train_epochs = 1, # Set this for 1 full training run.
max_steps = 100,
learning_rate = 2e-4,
fp16 = not is_bfloat16_supported(),
bf16 = is_bfloat16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "Llama-3.2-1B-Instruct-unsloth-bnb-4bit-outputs",
report_to = "none", # Use this for WandB etc
# 新增:每5步保存一次检查点
save_steps=5, # 中途断了可以继续,救命的地方
# 可选:限制总检查点数量,避免硬盘爆满
save_total_limit=10, # 保留最近10个检查点
# resume_from_checkpoint="Llama-3.2-1B-Instruct-unsloth-bnb-4bit-outputs/checkpoint-300", # 中途断了继续,救命的地方
),
)
trainer_stats = trainer.train()
# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonnaci sequence.", # instruction
"1, 1, 2, 3, 5, 8", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
# alpaca_prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
alpaca_prompt.format(
"Continue the fibonnaci sequence.", # instruction
"1, 1, 2, 3, 5, 8", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
tokenizer.batch_decode(outputs)
model.save_pretrained("Llama-3.2-1B-Instruct-unsloth-bnb-4bit-lora") # Local saving
tokenizer.save_pretrained("Llama-3.2-1B-Instruct-unsloth-bnb-4bit-lora")
model.save_pretrained_merged("Llama-3.2-1B-Instruct-unsloth-bnb-4bit-end", tokenizer)
炼完看看
from unsloth import FastLanguageModel
from unsloth import PatchFastRL
PatchFastRL("GRPO", FastLanguageModel)
import torch
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "./Llama-3.2-1B-Instruct-unsloth-bnb-4bit-end", # or choose "unsloth/Llama-3.2-1B-Instruct"
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
if False:
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "./DeepSeek-R1-Distill-Llama-8B-bnb-4bit-lora", # YOUR MODEL YOU USED FOR TRAINING
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# alpaca_prompt = You MUST copy from above!
inputs = tokenizer(
[
alpaca_prompt.format(
"深度思索", # instruction
""" 能给我讲一个寓意深刻的故事吗? """, # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1024)
总结
- 'loss': 2.2363 只看这个结果,好像0.75左右好点吧,我训练了400步才这样,算了,电脑嗷嗷叫
- 这就是炼丹,看结果,重复炼丹,看结果.训练模型没那么难.就是拼硬件,拼电费,拼准备的数据