bitcloud2 commited on
Commit
bd8b52e
·
1 Parent(s): 83acc92

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: -2.81 +/- 1.12
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: PandaReachDense-v2
20
+ type: PandaReachDense-v2
21
+ ---
22
+
23
+ # **A2C** Agent playing **PandaReachDense-v2**
24
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51be24e3ee5acf5c9c8e27ddc56cdb8692001178b01655c5fec8fc3039d19b64
3
+ size 108036
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6f8ca28820>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f6f8ca1fe10>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674368471922312997,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRi9kYXRhc2NpL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEYvZGF0YXNjaS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAW1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAptOTv1o4W74t2HA/ixOsv51ECr6Wrbk/TwWvv1VLTr8oJwu/pqhuvy4cmD/4KAG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLyUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]]",
60
+ "desired_goal": "[[-1.1548965 -0.21408215 0.9407986 ]\n [-1.3443464 -0.13502736 1.4506099 ]\n [-1.3673495 -0.805837 -0.5435662 ]\n [-0.9322609 1.18836 -0.5045314 ]]",
61
+ "observation": "[[ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUWlyvaAZaTyfbOA8nKcDPj0OY7pjsrA9umNZPeuIBT4f0+E9jS0LPvd4AT6jAYc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[-0.05918247 0.0142273 0.02739554]\n [ 0.12856907 -0.00086615 0.08627775]\n [ 0.05307362 0.13040511 0.11026596]\n [ 0.13591595 0.126438 0.06592109]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINJ2dDI6yBsCUhpRSlIwBbJRLMowBdJRHQKCDBavicXp1fZQoaAZoCWgPQwgm4NdIEsQNwJSGlFKUaBVLMmgWR0Cggtg88s+WdX2UKGgGaAloD0MIPWTKh6DqAcCUhpRSlGgVSzJoFkdAoIKrAtWdVnV9lChoBmgJaA9DCJs5JLVQkgTAlIaUUpRoFUsyaBZHQKCCfkI5YHR1fZQoaAZoCWgPQwiJXdvbLekFwJSGlFKUaBVLMmgWR0Cgg8FERaoudX2UKGgGaAloD0MIUIwsmWM5+7+UhpRSlGgVSzJoFkdAoIOT1Iy0r3V9lChoBmgJaA9DCKkxIeaS6v2/lIaUUpRoFUsyaBZHQKCDZo+wC8x1fZQoaAZoCWgPQwh5sTBETt8CwJSGlFKUaBVLMmgWR0CggzmEwnIAdX2UKGgGaAloD0MIR3GOOjpOCcCUhpRSlGgVSzJoFkdAoISCb6P8ynV9lChoBmgJaA9DCIxl+iXiDQHAlIaUUpRoFUsyaBZHQKCEVP3SKFZ1fZQoaAZoCWgPQwhTeNDsurcFwJSGlFKUaBVLMmgWR0CghCe+VTrFdX2UKGgGaAloD0MIVHQkl/8QDcCUhpRSlGgVSzJoFkdAoIP68xsVL3V9lChoBmgJaA9DCIG0/wHWigfAlIaUUpRoFUsyaBZHQKCFQFNcnmd1fZQoaAZoCWgPQwhyi/m5ockBwJSGlFKUaBVLMmgWR0CghRLupjtpdX2UKGgGaAloD0MInkXvVMDdC8CUhpRSlGgVSzJoFkdAoITluJk5InV9lChoBmgJaA9DCLWn5JzYg/+/lIaUUpRoFUsyaBZHQKCEuKrJbMZ1fZQoaAZoCWgPQwi8sDVbeWkDwJSGlFKUaBVLMmgWR0Cghf02tMfzdX2UKGgGaAloD0MI2ubG9ITl/b+UhpRSlGgVSzJoFkdAoIXPzFuNxXV9lChoBmgJaA9DCFD8GHPXMgHAlIaUUpRoFUsyaBZHQKCFopjtoi91fZQoaAZoCWgPQwilETP7PCYEwJSGlFKUaBVLMmgWR0CghXWJ79hrdX2UKGgGaAloD0MI3iBaK9rc/r+UhpRSlGgVSzJoFkdAoIa6BI4EOnV9lChoBmgJaA9DCBRa1v1j4QPAlIaUUpRoFUsyaBZHQKCGjJXhfjV1fZQoaAZoCWgPQwjdYKjDCjf6v5SGlFKUaBVLMmgWR0Cghl9cry2AdX2UKGgGaAloD0MIDFpIwOjSBcCUhpRSlGgVSzJoFkdAoIYyVyFPBXV9lChoBmgJaA9DCOEM/n4xewzAlIaUUpRoFUsyaBZHQKCHdBD5TIh1fZQoaAZoCWgPQwijVwOUhpr9v5SGlFKUaBVLMmgWR0Cgh0akqMFVdX2UKGgGaAloD0MI/7EQHQInBcCUhpRSlGgVSzJoFkdAoIcZZ6lchXV9lChoBmgJaA9DCLQfKSLDKgfAlIaUUpRoFUsyaBZHQKCG7F3IMjN1fZQoaAZoCWgPQwg/48KBkOwDwJSGlFKUaBVLMmgWR0CgiC+mWMS9dX2UKGgGaAloD0MIiCtn74x2A8CUhpRSlGgVSzJoFkdAoIgCPGQ0XXV9lChoBmgJaA9DCPUUOUTcfArAlIaUUpRoFUsyaBZHQKCH1QXyiEh1fZQoaAZoCWgPQwg900uMZTr9v5SGlFKUaBVLMmgWR0Cgh6gAQxvfdX2UKGgGaAloD0MIYRqGj4hp/r+UhpRSlGgVSzJoFkdAoIjygElme3V9lChoBmgJaA9DCJqXw+47xvy/lIaUUpRoFUsyaBZHQKCIxSThYNl1fZQoaAZoCWgPQwhM4UGz697/v5SGlFKUaBVLMmgWR0CgiJf3FkxzdX2UKGgGaAloD0MIPZzAdFpXAsCUhpRSlGgVSzJoFkdAoIhq66J66nV9lChoBmgJaA9DCBA8vr1r8A/AlIaUUpRoFUsyaBZHQKCJsg6ltTF1fZQoaAZoCWgPQwhm3NRA8zn8v5SGlFKUaBVLMmgWR0CgiYSiudPMdX2UKGgGaAloD0MICacFL/oqAcCUhpRSlGgVSzJoFkdAoIlXbZezEHV9lChoBmgJaA9DCB+BP/z89wzAlIaUUpRoFUsyaBZHQKCJKmP5pJx1fZQoaAZoCWgPQwjKGB9mL7sPwJSGlFKUaBVLMmgWR0CgindSl3yJdX2UKGgGaAloD0MIIxYx7DBmA8CUhpRSlGgVSzJoFkdAoIpJ5NXYDnV9lChoBmgJaA9DCBnkLsIUxRHAlIaUUpRoFUsyaBZHQKCKHLqUu+R1fZQoaAZoCWgPQwiKdD+nIL/0v5SGlFKUaBVLMmgWR0Cgie+1KGtZdX2UKGgGaAloD0MIflcE/1tJ+b+UhpRSlGgVSzJoFkdAoItB4QjD9HV9lChoBmgJaA9DCE2EDU+vFPm/lIaUUpRoFUsyaBZHQKCLFLJ0W/J1fZQoaAZoCWgPQwiFQC5x5IESwJSGlFKUaBVLMmgWR0Cgiud8JD3NdX2UKGgGaAloD0MIzQTDuYa5A8CUhpRSlGgVSzJoFkdAoIq6curZJ3V9lChoBmgJaA9DCIE+kSdJFxDAlIaUUpRoFUsyaBZHQKCMBmQKa5R1fZQoaAZoCWgPQwjPhCaJJWX4v5SGlFKUaBVLMmgWR0Cgi9kGA09AdX2UKGgGaAloD0MIjIaMR6mkBMCUhpRSlGgVSzJoFkdAoIur0Fr2x3V9lChoBmgJaA9DCBPU8C2sm/i/lIaUUpRoFUsyaBZHQKCLfsfq5b11fZQoaAZoCWgPQwhhqMMKt1wDwJSGlFKUaBVLMmgWR0CgjM2QXAM2dX2UKGgGaAloD0MI2VvK+WIv9b+UhpRSlGgVSzJoFkdAoIygKMNtqHV9lChoBmgJaA9DCCY5YFeT5/a/lIaUUpRoFUsyaBZHQKCMcwfQrtp1fZQoaAZoCWgPQwhuh4bFqKv9v5SGlFKUaBVLMmgWR0CgjEYD9wWFdX2UKGgGaAloD0MIskY9RKO79b+UhpRSlGgVSzJoFkdAoI2RDgIhQnV9lChoBmgJaA9DCCL+YUuPhhHAlIaUUpRoFUsyaBZHQKCNY6GQCCB1fZQoaAZoCWgPQwjt9IO6SKEJwJSGlFKUaBVLMmgWR0CgjTZftx+8dX2UKGgGaAloD0MIGeYEbXI4+r+UhpRSlGgVSzJoFkdAoI0Jk078vXV9lChoBmgJaA9DCMH+69y0mQPAlIaUUpRoFUsyaBZHQKCOV1ct5D91fZQoaAZoCWgPQwifq63YX3YPwJSGlFKUaBVLMmgWR0CgjinyEtdzdX2UKGgGaAloD0MIRwA3ixfL+r+UhpRSlGgVSzJoFkdAoI38sH0K7nV9lChoBmgJaA9DCHF1AMRdPfO/lIaUUpRoFUsyaBZHQKCNz6IFeOZ1fZQoaAZoCWgPQwib/uxHivgUwJSGlFKUaBVLMmgWR0CgjxcoH9m6dX2UKGgGaAloD0MIVtehmpIMAsCUhpRSlGgVSzJoFkdAoI7pwMpgC3V9lChoBmgJaA9DCOW4UzpYf/m/lIaUUpRoFUsyaBZHQKCOvLJ0W/J1fZQoaAZoCWgPQwg4aRoUzcP2v5SGlFKUaBVLMmgWR0Cgjo+sxO+JdX2UKGgGaAloD0MIu5hmutfJCsCUhpRSlGgVSzJoFkdAoI/c2rGR3nV9lChoBmgJaA9DCEAxsmSOZfa/lIaUUpRoFUsyaBZHQKCPr3Dej211fZQoaAZoCWgPQwgMzXUaaQkCwJSGlFKUaBVLMmgWR0Cgj4I24uscdX2UKGgGaAloD0MIilsFMdD1/r+UhpRSlGgVSzJoFkdAoI9VQCSzPnV9lChoBmgJaA9DCN4CCYofgwfAlIaUUpRoFUsyaBZHQKCQoRzRx951fZQoaAZoCWgPQwhEozuInSn9v5SGlFKUaBVLMmgWR0CgkHOoYNy6dX2UKGgGaAloD0MIbagY529iBMCUhpRSlGgVSzJoFkdAoJBGbAk9lnV9lChoBmgJaA9DCNz0Zz9SZAbAlIaUUpRoFUsyaBZHQKCQGal1r7B1fZQoaAZoCWgPQwhSnnk57N4IwJSGlFKUaBVLMmgWR0CgkWhiCrcTdX2UKGgGaAloD0MIGsQHdvzXAMCUhpRSlGgVSzJoFkdAoJE6+WWyDHV9lChoBmgJaA9DCBIWFXE6if2/lIaUUpRoFUsyaBZHQKCRDg4Otnx1fZQoaAZoCWgPQwgqHaz/c3gDwJSGlFKUaBVLMmgWR0CgkOD+R5kcdX2UKGgGaAloD0MITBk4oKU7EMCUhpRSlGgVSzJoFkdAoJIi6nR9gHV9lChoBmgJaA9DCOpYpfRMrwvAlIaUUpRoFUsyaBZHQKCR9W6shgV1fZQoaAZoCWgPQwiiCKnb2VcEwJSGlFKUaBVLMmgWR0Cgkcg0j1PFdX2UKGgGaAloD0MIiXjr/Nvl/L+UhpRSlGgVSzJoFkdAoJGbQZ4wAXV9lChoBmgJaA9DCKn5KvnYLRLAlIaUUpRoFUsyaBZHQKCS44QSSNh1fZQoaAZoCWgPQwigNqrTgWwDwJSGlFKUaBVLMmgWR0CgkrYjbBXTdX2UKGgGaAloD0MIj6uRXWlZ8r+UhpRSlGgVSzJoFkdAoJKI+bExZnV9lChoBmgJaA9DCPBOPj225fS/lIaUUpRoFUsyaBZHQKCSXAN5MUR1fZQoaAZoCWgPQwhq9kArMCQDwJSGlFKUaBVLMmgWR0Cgk64oAn2JdX2UKGgGaAloD0MIMJxrmKHx/b+UhpRSlGgVSzJoFkdAoJOAuh9LH3V9lChoBmgJaA9DCMHlsWZk0Pq/lIaUUpRoFUsyaBZHQKCTU4YJmd11fZQoaAZoCWgPQwie7dEb7oMAwJSGlFKUaBVLMmgWR0CgkyaTW5H3dX2UKGgGaAloD0MIa0YGuYvwCcCUhpRSlGgVSzJoFkdAoJRugOBlMHV9lChoBmgJaA9DCAVTzaylIAPAlIaUUpRoFUsyaBZHQKCUQRL9MsZ1fZQoaAZoCWgPQwjLEwg7xWoFwJSGlFKUaBVLMmgWR0CglBPWQOnVdX2UKGgGaAloD0MIjEtV2uK6CsCUhpRSlGgVSzJoFkdAoJPm9YfW+XV9lChoBmgJaA9DCOOL9nghPQjAlIaUUpRoFUsyaBZHQKCVMnaWX1J1fZQoaAZoCWgPQwjS5c3hWo0EwJSGlFKUaBVLMmgWR0CglQUN8VpLdX2UKGgGaAloD0MImWclrfgmDsCUhpRSlGgVSzJoFkdAoJTX0f5k9XV9lChoBmgJaA9DCNriGp/JngLAlIaUUpRoFUsyaBZHQKCUqsny/bl1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60e5973ecfa72d41ff4e239542b4781d21806c4acb513a6099763bc7f344fb87
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a25b14fe8a7ad02402631a380cf2459ed56b0888adb45c7cb408b5c472aa65b5
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-1086-aws-x86_64-with-glibc2.29 # 93~18.04.1-Ubuntu SMP Fri Sep 23 17:19:00 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6f8ca28820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6f8ca1fe10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674368471922312997, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRi9kYXRhc2NpL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEYvZGF0YXNjaS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAW1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAptOTv1o4W74t2HA/ixOsv51ECr6Wrbk/TwWvv1VLTr8oJwu/pqhuvy4cmD/4KAG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]]", "desired_goal": "[[-1.1548965 -0.21408215 0.9407986 ]\n [-1.3443464 -0.13502736 1.4506099 ]\n [-1.3673495 -0.805837 -0.5435662 ]\n [-0.9322609 1.18836 -0.5045314 ]]", "observation": "[[ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUWlyvaAZaTyfbOA8nKcDPj0OY7pjsrA9umNZPeuIBT4f0+E9jS0LPvd4AT6jAYc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05918247 0.0142273 0.02739554]\n [ 0.12856907 -0.00086615 0.08627775]\n [ 0.05307362 0.13040511 0.11026596]\n [ 0.13591595 0.126438 0.06592109]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINJ2dDI6yBsCUhpRSlIwBbJRLMowBdJRHQKCDBavicXp1fZQoaAZoCWgPQwgm4NdIEsQNwJSGlFKUaBVLMmgWR0Cggtg88s+WdX2UKGgGaAloD0MIPWTKh6DqAcCUhpRSlGgVSzJoFkdAoIKrAtWdVnV9lChoBmgJaA9DCJs5JLVQkgTAlIaUUpRoFUsyaBZHQKCCfkI5YHR1fZQoaAZoCWgPQwiJXdvbLekFwJSGlFKUaBVLMmgWR0Cgg8FERaoudX2UKGgGaAloD0MIUIwsmWM5+7+UhpRSlGgVSzJoFkdAoIOT1Iy0r3V9lChoBmgJaA9DCKkxIeaS6v2/lIaUUpRoFUsyaBZHQKCDZo+wC8x1fZQoaAZoCWgPQwh5sTBETt8CwJSGlFKUaBVLMmgWR0CggzmEwnIAdX2UKGgGaAloD0MIR3GOOjpOCcCUhpRSlGgVSzJoFkdAoISCb6P8ynV9lChoBmgJaA9DCIxl+iXiDQHAlIaUUpRoFUsyaBZHQKCEVP3SKFZ1fZQoaAZoCWgPQwhTeNDsurcFwJSGlFKUaBVLMmgWR0CghCe+VTrFdX2UKGgGaAloD0MIVHQkl/8QDcCUhpRSlGgVSzJoFkdAoIP68xsVL3V9lChoBmgJaA9DCIG0/wHWigfAlIaUUpRoFUsyaBZHQKCFQFNcnmd1fZQoaAZoCWgPQwhyi/m5ockBwJSGlFKUaBVLMmgWR0CghRLupjtpdX2UKGgGaAloD0MInkXvVMDdC8CUhpRSlGgVSzJoFkdAoITluJk5InV9lChoBmgJaA9DCLWn5JzYg/+/lIaUUpRoFUsyaBZHQKCEuKrJbMZ1fZQoaAZoCWgPQwi8sDVbeWkDwJSGlFKUaBVLMmgWR0Cghf02tMfzdX2UKGgGaAloD0MI2ubG9ITl/b+UhpRSlGgVSzJoFkdAoIXPzFuNxXV9lChoBmgJaA9DCFD8GHPXMgHAlIaUUpRoFUsyaBZHQKCFopjtoi91fZQoaAZoCWgPQwilETP7PCYEwJSGlFKUaBVLMmgWR0CghXWJ79hrdX2UKGgGaAloD0MI3iBaK9rc/r+UhpRSlGgVSzJoFkdAoIa6BI4EOnV9lChoBmgJaA9DCBRa1v1j4QPAlIaUUpRoFUsyaBZHQKCGjJXhfjV1fZQoaAZoCWgPQwjdYKjDCjf6v5SGlFKUaBVLMmgWR0Cghl9cry2AdX2UKGgGaAloD0MIDFpIwOjSBcCUhpRSlGgVSzJoFkdAoIYyVyFPBXV9lChoBmgJaA9DCOEM/n4xewzAlIaUUpRoFUsyaBZHQKCHdBD5TIh1fZQoaAZoCWgPQwijVwOUhpr9v5SGlFKUaBVLMmgWR0Cgh0akqMFVdX2UKGgGaAloD0MI/7EQHQInBcCUhpRSlGgVSzJoFkdAoIcZZ6lchXV9lChoBmgJaA9DCLQfKSLDKgfAlIaUUpRoFUsyaBZHQKCG7F3IMjN1fZQoaAZoCWgPQwg/48KBkOwDwJSGlFKUaBVLMmgWR0CgiC+mWMS9dX2UKGgGaAloD0MIiCtn74x2A8CUhpRSlGgVSzJoFkdAoIgCPGQ0XXV9lChoBmgJaA9DCPUUOUTcfArAlIaUUpRoFUsyaBZHQKCH1QXyiEh1fZQoaAZoCWgPQwg900uMZTr9v5SGlFKUaBVLMmgWR0Cgh6gAQxvfdX2UKGgGaAloD0MIYRqGj4hp/r+UhpRSlGgVSzJoFkdAoIjygElme3V9lChoBmgJaA9DCJqXw+47xvy/lIaUUpRoFUsyaBZHQKCIxSThYNl1fZQoaAZoCWgPQwhM4UGz697/v5SGlFKUaBVLMmgWR0CgiJf3FkxzdX2UKGgGaAloD0MIPZzAdFpXAsCUhpRSlGgVSzJoFkdAoIhq66J66nV9lChoBmgJaA9DCBA8vr1r8A/AlIaUUpRoFUsyaBZHQKCJsg6ltTF1fZQoaAZoCWgPQwhm3NRA8zn8v5SGlFKUaBVLMmgWR0CgiYSiudPMdX2UKGgGaAloD0MICacFL/oqAcCUhpRSlGgVSzJoFkdAoIlXbZezEHV9lChoBmgJaA9DCB+BP/z89wzAlIaUUpRoFUsyaBZHQKCJKmP5pJx1fZQoaAZoCWgPQwjKGB9mL7sPwJSGlFKUaBVLMmgWR0CgindSl3yJdX2UKGgGaAloD0MIIxYx7DBmA8CUhpRSlGgVSzJoFkdAoIpJ5NXYDnV9lChoBmgJaA9DCBnkLsIUxRHAlIaUUpRoFUsyaBZHQKCKHLqUu+R1fZQoaAZoCWgPQwiKdD+nIL/0v5SGlFKUaBVLMmgWR0Cgie+1KGtZdX2UKGgGaAloD0MIflcE/1tJ+b+UhpRSlGgVSzJoFkdAoItB4QjD9HV9lChoBmgJaA9DCE2EDU+vFPm/lIaUUpRoFUsyaBZHQKCLFLJ0W/J1fZQoaAZoCWgPQwiFQC5x5IESwJSGlFKUaBVLMmgWR0Cgiud8JD3NdX2UKGgGaAloD0MIzQTDuYa5A8CUhpRSlGgVSzJoFkdAoIq6curZJ3V9lChoBmgJaA9DCIE+kSdJFxDAlIaUUpRoFUsyaBZHQKCMBmQKa5R1fZQoaAZoCWgPQwjPhCaJJWX4v5SGlFKUaBVLMmgWR0Cgi9kGA09AdX2UKGgGaAloD0MIjIaMR6mkBMCUhpRSlGgVSzJoFkdAoIur0Fr2x3V9lChoBmgJaA9DCBPU8C2sm/i/lIaUUpRoFUsyaBZHQKCLfsfq5b11fZQoaAZoCWgPQwhhqMMKt1wDwJSGlFKUaBVLMmgWR0CgjM2QXAM2dX2UKGgGaAloD0MI2VvK+WIv9b+UhpRSlGgVSzJoFkdAoIygKMNtqHV9lChoBmgJaA9DCCY5YFeT5/a/lIaUUpRoFUsyaBZHQKCMcwfQrtp1fZQoaAZoCWgPQwhuh4bFqKv9v5SGlFKUaBVLMmgWR0CgjEYD9wWFdX2UKGgGaAloD0MIskY9RKO79b+UhpRSlGgVSzJoFkdAoI2RDgIhQnV9lChoBmgJaA9DCCL+YUuPhhHAlIaUUpRoFUsyaBZHQKCNY6GQCCB1fZQoaAZoCWgPQwjt9IO6SKEJwJSGlFKUaBVLMmgWR0CgjTZftx+8dX2UKGgGaAloD0MIGeYEbXI4+r+UhpRSlGgVSzJoFkdAoI0Jk078vXV9lChoBmgJaA9DCMH+69y0mQPAlIaUUpRoFUsyaBZHQKCOV1ct5D91fZQoaAZoCWgPQwifq63YX3YPwJSGlFKUaBVLMmgWR0CgjinyEtdzdX2UKGgGaAloD0MIRwA3ixfL+r+UhpRSlGgVSzJoFkdAoI38sH0K7nV9lChoBmgJaA9DCHF1AMRdPfO/lIaUUpRoFUsyaBZHQKCNz6IFeOZ1fZQoaAZoCWgPQwib/uxHivgUwJSGlFKUaBVLMmgWR0CgjxcoH9m6dX2UKGgGaAloD0MIVtehmpIMAsCUhpRSlGgVSzJoFkdAoI7pwMpgC3V9lChoBmgJaA9DCOW4UzpYf/m/lIaUUpRoFUsyaBZHQKCOvLJ0W/J1fZQoaAZoCWgPQwg4aRoUzcP2v5SGlFKUaBVLMmgWR0Cgjo+sxO+JdX2UKGgGaAloD0MIu5hmutfJCsCUhpRSlGgVSzJoFkdAoI/c2rGR3nV9lChoBmgJaA9DCEAxsmSOZfa/lIaUUpRoFUsyaBZHQKCPr3Dej211fZQoaAZoCWgPQwgMzXUaaQkCwJSGlFKUaBVLMmgWR0Cgj4I24uscdX2UKGgGaAloD0MIilsFMdD1/r+UhpRSlGgVSzJoFkdAoI9VQCSzPnV9lChoBmgJaA9DCN4CCYofgwfAlIaUUpRoFUsyaBZHQKCQoRzRx951fZQoaAZoCWgPQwhEozuInSn9v5SGlFKUaBVLMmgWR0CgkHOoYNy6dX2UKGgGaAloD0MIbagY529iBMCUhpRSlGgVSzJoFkdAoJBGbAk9lnV9lChoBmgJaA9DCNz0Zz9SZAbAlIaUUpRoFUsyaBZHQKCQGal1r7B1fZQoaAZoCWgPQwhSnnk57N4IwJSGlFKUaBVLMmgWR0CgkWhiCrcTdX2UKGgGaAloD0MIGsQHdvzXAMCUhpRSlGgVSzJoFkdAoJE6+WWyDHV9lChoBmgJaA9DCBIWFXE6if2/lIaUUpRoFUsyaBZHQKCRDg4Otnx1fZQoaAZoCWgPQwgqHaz/c3gDwJSGlFKUaBVLMmgWR0CgkOD+R5kcdX2UKGgGaAloD0MITBk4oKU7EMCUhpRSlGgVSzJoFkdAoJIi6nR9gHV9lChoBmgJaA9DCOpYpfRMrwvAlIaUUpRoFUsyaBZHQKCR9W6shgV1fZQoaAZoCWgPQwiiCKnb2VcEwJSGlFKUaBVLMmgWR0Cgkcg0j1PFdX2UKGgGaAloD0MIiXjr/Nvl/L+UhpRSlGgVSzJoFkdAoJGbQZ4wAXV9lChoBmgJaA9DCKn5KvnYLRLAlIaUUpRoFUsyaBZHQKCS44QSSNh1fZQoaAZoCWgPQwigNqrTgWwDwJSGlFKUaBVLMmgWR0CgkrYjbBXTdX2UKGgGaAloD0MIj6uRXWlZ8r+UhpRSlGgVSzJoFkdAoJKI+bExZnV9lChoBmgJaA9DCPBOPj225fS/lIaUUpRoFUsyaBZHQKCSXAN5MUR1fZQoaAZoCWgPQwhq9kArMCQDwJSGlFKUaBVLMmgWR0Cgk64oAn2JdX2UKGgGaAloD0MIMJxrmKHx/b+UhpRSlGgVSzJoFkdAoJOAuh9LH3V9lChoBmgJaA9DCMHlsWZk0Pq/lIaUUpRoFUsyaBZHQKCTU4YJmd11fZQoaAZoCWgPQwie7dEb7oMAwJSGlFKUaBVLMmgWR0CgkyaTW5H3dX2UKGgGaAloD0MIa0YGuYvwCcCUhpRSlGgVSzJoFkdAoJRugOBlMHV9lChoBmgJaA9DCAVTzaylIAPAlIaUUpRoFUsyaBZHQKCUQRL9MsZ1fZQoaAZoCWgPQwjLEwg7xWoFwJSGlFKUaBVLMmgWR0CglBPWQOnVdX2UKGgGaAloD0MIjEtV2uK6CsCUhpRSlGgVSzJoFkdAoJPm9YfW+XV9lChoBmgJaA9DCOOL9nghPQjAlIaUUpRoFUsyaBZHQKCVMnaWX1J1fZQoaAZoCWgPQwjS5c3hWo0EwJSGlFKUaBVLMmgWR0CglQUN8VpLdX2UKGgGaAloD0MImWclrfgmDsCUhpRSlGgVSzJoFkdAoJTX0f5k9XV9lChoBmgJaA9DCNriGp/JngLAlIaUUpRoFUsyaBZHQKCUqsny/bl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-1086-aws-x86_64-with-glibc2.29 # 93~18.04.1-Ubuntu SMP Fri Sep 23 17:19:00 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (742 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -2.805347713455558, "std_reward": 1.1179314366267121, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T06:57:25.454978"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e471ca109997f1c1f8fe4a0a6d783495fb639bf5a9c76cb998aa9f5ac1d5168c
3
+ size 3056