Initial commit
Browse files- README.md +36 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -2.81 +/- 1.12
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: PandaReachDense-v2
|
20 |
+
type: PandaReachDense-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
24 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51be24e3ee5acf5c9c8e27ddc56cdb8692001178b01655c5fec8fc3039d19b64
|
3 |
+
size 108036
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6f8ca28820>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f6f8ca1fe10>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1674368471922312997,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRi9kYXRhc2NpL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEYvZGF0YXNjaS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAW1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAptOTv1o4W74t2HA/ixOsv51ECr6Wrbk/TwWvv1VLTr8oJwu/pqhuvy4cmD/4KAG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]]",
|
60 |
+
"desired_goal": "[[-1.1548965 -0.21408215 0.9407986 ]\n [-1.3443464 -0.13502736 1.4506099 ]\n [-1.3673495 -0.805837 -0.5435662 ]\n [-0.9322609 1.18836 -0.5045314 ]]",
|
61 |
+
"observation": "[[ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUWlyvaAZaTyfbOA8nKcDPj0OY7pjsrA9umNZPeuIBT4f0+E9jS0LPvd4AT6jAYc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.05918247 0.0142273 0.02739554]\n [ 0.12856907 -0.00086615 0.08627775]\n [ 0.05307362 0.13040511 0.11026596]\n [ 0.13591595 0.126438 0.06592109]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINJ2dDI6yBsCUhpRSlIwBbJRLMowBdJRHQKCDBavicXp1fZQoaAZoCWgPQwgm4NdIEsQNwJSGlFKUaBVLMmgWR0Cggtg88s+WdX2UKGgGaAloD0MIPWTKh6DqAcCUhpRSlGgVSzJoFkdAoIKrAtWdVnV9lChoBmgJaA9DCJs5JLVQkgTAlIaUUpRoFUsyaBZHQKCCfkI5YHR1fZQoaAZoCWgPQwiJXdvbLekFwJSGlFKUaBVLMmgWR0Cgg8FERaoudX2UKGgGaAloD0MIUIwsmWM5+7+UhpRSlGgVSzJoFkdAoIOT1Iy0r3V9lChoBmgJaA9DCKkxIeaS6v2/lIaUUpRoFUsyaBZHQKCDZo+wC8x1fZQoaAZoCWgPQwh5sTBETt8CwJSGlFKUaBVLMmgWR0CggzmEwnIAdX2UKGgGaAloD0MIR3GOOjpOCcCUhpRSlGgVSzJoFkdAoISCb6P8ynV9lChoBmgJaA9DCIxl+iXiDQHAlIaUUpRoFUsyaBZHQKCEVP3SKFZ1fZQoaAZoCWgPQwhTeNDsurcFwJSGlFKUaBVLMmgWR0CghCe+VTrFdX2UKGgGaAloD0MIVHQkl/8QDcCUhpRSlGgVSzJoFkdAoIP68xsVL3V9lChoBmgJaA9DCIG0/wHWigfAlIaUUpRoFUsyaBZHQKCFQFNcnmd1fZQoaAZoCWgPQwhyi/m5ockBwJSGlFKUaBVLMmgWR0CghRLupjtpdX2UKGgGaAloD0MInkXvVMDdC8CUhpRSlGgVSzJoFkdAoITluJk5InV9lChoBmgJaA9DCLWn5JzYg/+/lIaUUpRoFUsyaBZHQKCEuKrJbMZ1fZQoaAZoCWgPQwi8sDVbeWkDwJSGlFKUaBVLMmgWR0Cghf02tMfzdX2UKGgGaAloD0MI2ubG9ITl/b+UhpRSlGgVSzJoFkdAoIXPzFuNxXV9lChoBmgJaA9DCFD8GHPXMgHAlIaUUpRoFUsyaBZHQKCFopjtoi91fZQoaAZoCWgPQwilETP7PCYEwJSGlFKUaBVLMmgWR0CghXWJ79hrdX2UKGgGaAloD0MI3iBaK9rc/r+UhpRSlGgVSzJoFkdAoIa6BI4EOnV9lChoBmgJaA9DCBRa1v1j4QPAlIaUUpRoFUsyaBZHQKCGjJXhfjV1fZQoaAZoCWgPQwjdYKjDCjf6v5SGlFKUaBVLMmgWR0Cghl9cry2AdX2UKGgGaAloD0MIDFpIwOjSBcCUhpRSlGgVSzJoFkdAoIYyVyFPBXV9lChoBmgJaA9DCOEM/n4xewzAlIaUUpRoFUsyaBZHQKCHdBD5TIh1fZQoaAZoCWgPQwijVwOUhpr9v5SGlFKUaBVLMmgWR0Cgh0akqMFVdX2UKGgGaAloD0MI/7EQHQInBcCUhpRSlGgVSzJoFkdAoIcZZ6lchXV9lChoBmgJaA9DCLQfKSLDKgfAlIaUUpRoFUsyaBZHQKCG7F3IMjN1fZQoaAZoCWgPQwg/48KBkOwDwJSGlFKUaBVLMmgWR0CgiC+mWMS9dX2UKGgGaAloD0MIiCtn74x2A8CUhpRSlGgVSzJoFkdAoIgCPGQ0XXV9lChoBmgJaA9DCPUUOUTcfArAlIaUUpRoFUsyaBZHQKCH1QXyiEh1fZQoaAZoCWgPQwg900uMZTr9v5SGlFKUaBVLMmgWR0Cgh6gAQxvfdX2UKGgGaAloD0MIYRqGj4hp/r+UhpRSlGgVSzJoFkdAoIjygElme3V9lChoBmgJaA9DCJqXw+47xvy/lIaUUpRoFUsyaBZHQKCIxSThYNl1fZQoaAZoCWgPQwhM4UGz697/v5SGlFKUaBVLMmgWR0CgiJf3FkxzdX2UKGgGaAloD0MIPZzAdFpXAsCUhpRSlGgVSzJoFkdAoIhq66J66nV9lChoBmgJaA9DCBA8vr1r8A/AlIaUUpRoFUsyaBZHQKCJsg6ltTF1fZQoaAZoCWgPQwhm3NRA8zn8v5SGlFKUaBVLMmgWR0CgiYSiudPMdX2UKGgGaAloD0MICacFL/oqAcCUhpRSlGgVSzJoFkdAoIlXbZezEHV9lChoBmgJaA9DCB+BP/z89wzAlIaUUpRoFUsyaBZHQKCJKmP5pJx1fZQoaAZoCWgPQwjKGB9mL7sPwJSGlFKUaBVLMmgWR0CgindSl3yJdX2UKGgGaAloD0MIIxYx7DBmA8CUhpRSlGgVSzJoFkdAoIpJ5NXYDnV9lChoBmgJaA9DCBnkLsIUxRHAlIaUUpRoFUsyaBZHQKCKHLqUu+R1fZQoaAZoCWgPQwiKdD+nIL/0v5SGlFKUaBVLMmgWR0Cgie+1KGtZdX2UKGgGaAloD0MIflcE/1tJ+b+UhpRSlGgVSzJoFkdAoItB4QjD9HV9lChoBmgJaA9DCE2EDU+vFPm/lIaUUpRoFUsyaBZHQKCLFLJ0W/J1fZQoaAZoCWgPQwiFQC5x5IESwJSGlFKUaBVLMmgWR0Cgiud8JD3NdX2UKGgGaAloD0MIzQTDuYa5A8CUhpRSlGgVSzJoFkdAoIq6curZJ3V9lChoBmgJaA9DCIE+kSdJFxDAlIaUUpRoFUsyaBZHQKCMBmQKa5R1fZQoaAZoCWgPQwjPhCaJJWX4v5SGlFKUaBVLMmgWR0Cgi9kGA09AdX2UKGgGaAloD0MIjIaMR6mkBMCUhpRSlGgVSzJoFkdAoIur0Fr2x3V9lChoBmgJaA9DCBPU8C2sm/i/lIaUUpRoFUsyaBZHQKCLfsfq5b11fZQoaAZoCWgPQwhhqMMKt1wDwJSGlFKUaBVLMmgWR0CgjM2QXAM2dX2UKGgGaAloD0MI2VvK+WIv9b+UhpRSlGgVSzJoFkdAoIygKMNtqHV9lChoBmgJaA9DCCY5YFeT5/a/lIaUUpRoFUsyaBZHQKCMcwfQrtp1fZQoaAZoCWgPQwhuh4bFqKv9v5SGlFKUaBVLMmgWR0CgjEYD9wWFdX2UKGgGaAloD0MIskY9RKO79b+UhpRSlGgVSzJoFkdAoI2RDgIhQnV9lChoBmgJaA9DCCL+YUuPhhHAlIaUUpRoFUsyaBZHQKCNY6GQCCB1fZQoaAZoCWgPQwjt9IO6SKEJwJSGlFKUaBVLMmgWR0CgjTZftx+8dX2UKGgGaAloD0MIGeYEbXI4+r+UhpRSlGgVSzJoFkdAoI0Jk078vXV9lChoBmgJaA9DCMH+69y0mQPAlIaUUpRoFUsyaBZHQKCOV1ct5D91fZQoaAZoCWgPQwifq63YX3YPwJSGlFKUaBVLMmgWR0CgjinyEtdzdX2UKGgGaAloD0MIRwA3ixfL+r+UhpRSlGgVSzJoFkdAoI38sH0K7nV9lChoBmgJaA9DCHF1AMRdPfO/lIaUUpRoFUsyaBZHQKCNz6IFeOZ1fZQoaAZoCWgPQwib/uxHivgUwJSGlFKUaBVLMmgWR0CgjxcoH9m6dX2UKGgGaAloD0MIVtehmpIMAsCUhpRSlGgVSzJoFkdAoI7pwMpgC3V9lChoBmgJaA9DCOW4UzpYf/m/lIaUUpRoFUsyaBZHQKCOvLJ0W/J1fZQoaAZoCWgPQwg4aRoUzcP2v5SGlFKUaBVLMmgWR0Cgjo+sxO+JdX2UKGgGaAloD0MIu5hmutfJCsCUhpRSlGgVSzJoFkdAoI/c2rGR3nV9lChoBmgJaA9DCEAxsmSOZfa/lIaUUpRoFUsyaBZHQKCPr3Dej211fZQoaAZoCWgPQwgMzXUaaQkCwJSGlFKUaBVLMmgWR0Cgj4I24uscdX2UKGgGaAloD0MIilsFMdD1/r+UhpRSlGgVSzJoFkdAoI9VQCSzPnV9lChoBmgJaA9DCN4CCYofgwfAlIaUUpRoFUsyaBZHQKCQoRzRx951fZQoaAZoCWgPQwhEozuInSn9v5SGlFKUaBVLMmgWR0CgkHOoYNy6dX2UKGgGaAloD0MIbagY529iBMCUhpRSlGgVSzJoFkdAoJBGbAk9lnV9lChoBmgJaA9DCNz0Zz9SZAbAlIaUUpRoFUsyaBZHQKCQGal1r7B1fZQoaAZoCWgPQwhSnnk57N4IwJSGlFKUaBVLMmgWR0CgkWhiCrcTdX2UKGgGaAloD0MIGsQHdvzXAMCUhpRSlGgVSzJoFkdAoJE6+WWyDHV9lChoBmgJaA9DCBIWFXE6if2/lIaUUpRoFUsyaBZHQKCRDg4Otnx1fZQoaAZoCWgPQwgqHaz/c3gDwJSGlFKUaBVLMmgWR0CgkOD+R5kcdX2UKGgGaAloD0MITBk4oKU7EMCUhpRSlGgVSzJoFkdAoJIi6nR9gHV9lChoBmgJaA9DCOpYpfRMrwvAlIaUUpRoFUsyaBZHQKCR9W6shgV1fZQoaAZoCWgPQwiiCKnb2VcEwJSGlFKUaBVLMmgWR0Cgkcg0j1PFdX2UKGgGaAloD0MIiXjr/Nvl/L+UhpRSlGgVSzJoFkdAoJGbQZ4wAXV9lChoBmgJaA9DCKn5KvnYLRLAlIaUUpRoFUsyaBZHQKCS44QSSNh1fZQoaAZoCWgPQwigNqrTgWwDwJSGlFKUaBVLMmgWR0CgkrYjbBXTdX2UKGgGaAloD0MIj6uRXWlZ8r+UhpRSlGgVSzJoFkdAoJKI+bExZnV9lChoBmgJaA9DCPBOPj225fS/lIaUUpRoFUsyaBZHQKCSXAN5MUR1fZQoaAZoCWgPQwhq9kArMCQDwJSGlFKUaBVLMmgWR0Cgk64oAn2JdX2UKGgGaAloD0MIMJxrmKHx/b+UhpRSlGgVSzJoFkdAoJOAuh9LH3V9lChoBmgJaA9DCMHlsWZk0Pq/lIaUUpRoFUsyaBZHQKCTU4YJmd11fZQoaAZoCWgPQwie7dEb7oMAwJSGlFKUaBVLMmgWR0CgkyaTW5H3dX2UKGgGaAloD0MIa0YGuYvwCcCUhpRSlGgVSzJoFkdAoJRugOBlMHV9lChoBmgJaA9DCAVTzaylIAPAlIaUUpRoFUsyaBZHQKCUQRL9MsZ1fZQoaAZoCWgPQwjLEwg7xWoFwJSGlFKUaBVLMmgWR0CglBPWQOnVdX2UKGgGaAloD0MIjEtV2uK6CsCUhpRSlGgVSzJoFkdAoJPm9YfW+XV9lChoBmgJaA9DCOOL9nghPQjAlIaUUpRoFUsyaBZHQKCVMnaWX1J1fZQoaAZoCWgPQwjS5c3hWo0EwJSGlFKUaBVLMmgWR0CglQUN8VpLdX2UKGgGaAloD0MImWclrfgmDsCUhpRSlGgVSzJoFkdAoJTX0f5k9XV9lChoBmgJaA9DCNriGp/JngLAlIaUUpRoFUsyaBZHQKCUqsny/bl1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60e5973ecfa72d41ff4e239542b4781d21806c4acb513a6099763bc7f344fb87
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a25b14fe8a7ad02402631a380cf2459ed56b0888adb45c7cb408b5c472aa65b5
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.4.0-1086-aws-x86_64-with-glibc2.29 # 93~18.04.1-Ubuntu SMP Fri Sep 23 17:19:00 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6f8ca28820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6f8ca1fe10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674368471922312997, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRi9kYXRhc2NpL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEYvZGF0YXNjaS9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAW1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/W1jWPpzv9rxYkxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAptOTv1o4W74t2HA/ixOsv51ECr6Wrbk/TwWvv1VLTr8oJwu/pqhuvy4cmD/4KAG/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLxbWNY+nO/2vFiTFD/NRgE8HQN/ul/sJLyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]\n [ 0.41864285 -0.03014355 0.5803733 ]]", "desired_goal": "[[-1.1548965 -0.21408215 0.9407986 ]\n [-1.3443464 -0.13502736 1.4506099 ]\n [-1.3673495 -0.805837 -0.5435662 ]\n [-0.9322609 1.18836 -0.5045314 ]]", "observation": "[[ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]\n [ 0.41864285 -0.03014355 0.5803733 0.00789042 -0.00097279 -0.01006612]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUWlyvaAZaTyfbOA8nKcDPj0OY7pjsrA9umNZPeuIBT4f0+E9jS0LPvd4AT6jAYc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.05918247 0.0142273 0.02739554]\n [ 0.12856907 -0.00086615 0.08627775]\n [ 0.05307362 0.13040511 0.11026596]\n [ 0.13591595 0.126438 0.06592109]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINJ2dDI6yBsCUhpRSlIwBbJRLMowBdJRHQKCDBavicXp1fZQoaAZoCWgPQwgm4NdIEsQNwJSGlFKUaBVLMmgWR0Cggtg88s+WdX2UKGgGaAloD0MIPWTKh6DqAcCUhpRSlGgVSzJoFkdAoIKrAtWdVnV9lChoBmgJaA9DCJs5JLVQkgTAlIaUUpRoFUsyaBZHQKCCfkI5YHR1fZQoaAZoCWgPQwiJXdvbLekFwJSGlFKUaBVLMmgWR0Cgg8FERaoudX2UKGgGaAloD0MIUIwsmWM5+7+UhpRSlGgVSzJoFkdAoIOT1Iy0r3V9lChoBmgJaA9DCKkxIeaS6v2/lIaUUpRoFUsyaBZHQKCDZo+wC8x1fZQoaAZoCWgPQwh5sTBETt8CwJSGlFKUaBVLMmgWR0CggzmEwnIAdX2UKGgGaAloD0MIR3GOOjpOCcCUhpRSlGgVSzJoFkdAoISCb6P8ynV9lChoBmgJaA9DCIxl+iXiDQHAlIaUUpRoFUsyaBZHQKCEVP3SKFZ1fZQoaAZoCWgPQwhTeNDsurcFwJSGlFKUaBVLMmgWR0CghCe+VTrFdX2UKGgGaAloD0MIVHQkl/8QDcCUhpRSlGgVSzJoFkdAoIP68xsVL3V9lChoBmgJaA9DCIG0/wHWigfAlIaUUpRoFUsyaBZHQKCFQFNcnmd1fZQoaAZoCWgPQwhyi/m5ockBwJSGlFKUaBVLMmgWR0CghRLupjtpdX2UKGgGaAloD0MInkXvVMDdC8CUhpRSlGgVSzJoFkdAoITluJk5InV9lChoBmgJaA9DCLWn5JzYg/+/lIaUUpRoFUsyaBZHQKCEuKrJbMZ1fZQoaAZoCWgPQwi8sDVbeWkDwJSGlFKUaBVLMmgWR0Cghf02tMfzdX2UKGgGaAloD0MI2ubG9ITl/b+UhpRSlGgVSzJoFkdAoIXPzFuNxXV9lChoBmgJaA9DCFD8GHPXMgHAlIaUUpRoFUsyaBZHQKCFopjtoi91fZQoaAZoCWgPQwilETP7PCYEwJSGlFKUaBVLMmgWR0CghXWJ79hrdX2UKGgGaAloD0MI3iBaK9rc/r+UhpRSlGgVSzJoFkdAoIa6BI4EOnV9lChoBmgJaA9DCBRa1v1j4QPAlIaUUpRoFUsyaBZHQKCGjJXhfjV1fZQoaAZoCWgPQwjdYKjDCjf6v5SGlFKUaBVLMmgWR0Cghl9cry2AdX2UKGgGaAloD0MIDFpIwOjSBcCUhpRSlGgVSzJoFkdAoIYyVyFPBXV9lChoBmgJaA9DCOEM/n4xewzAlIaUUpRoFUsyaBZHQKCHdBD5TIh1fZQoaAZoCWgPQwijVwOUhpr9v5SGlFKUaBVLMmgWR0Cgh0akqMFVdX2UKGgGaAloD0MI/7EQHQInBcCUhpRSlGgVSzJoFkdAoIcZZ6lchXV9lChoBmgJaA9DCLQfKSLDKgfAlIaUUpRoFUsyaBZHQKCG7F3IMjN1fZQoaAZoCWgPQwg/48KBkOwDwJSGlFKUaBVLMmgWR0CgiC+mWMS9dX2UKGgGaAloD0MIiCtn74x2A8CUhpRSlGgVSzJoFkdAoIgCPGQ0XXV9lChoBmgJaA9DCPUUOUTcfArAlIaUUpRoFUsyaBZHQKCH1QXyiEh1fZQoaAZoCWgPQwg900uMZTr9v5SGlFKUaBVLMmgWR0Cgh6gAQxvfdX2UKGgGaAloD0MIYRqGj4hp/r+UhpRSlGgVSzJoFkdAoIjygElme3V9lChoBmgJaA9DCJqXw+47xvy/lIaUUpRoFUsyaBZHQKCIxSThYNl1fZQoaAZoCWgPQwhM4UGz697/v5SGlFKUaBVLMmgWR0CgiJf3FkxzdX2UKGgGaAloD0MIPZzAdFpXAsCUhpRSlGgVSzJoFkdAoIhq66J66nV9lChoBmgJaA9DCBA8vr1r8A/AlIaUUpRoFUsyaBZHQKCJsg6ltTF1fZQoaAZoCWgPQwhm3NRA8zn8v5SGlFKUaBVLMmgWR0CgiYSiudPMdX2UKGgGaAloD0MICacFL/oqAcCUhpRSlGgVSzJoFkdAoIlXbZezEHV9lChoBmgJaA9DCB+BP/z89wzAlIaUUpRoFUsyaBZHQKCJKmP5pJx1fZQoaAZoCWgPQwjKGB9mL7sPwJSGlFKUaBVLMmgWR0CgindSl3yJdX2UKGgGaAloD0MIIxYx7DBmA8CUhpRSlGgVSzJoFkdAoIpJ5NXYDnV9lChoBmgJaA9DCBnkLsIUxRHAlIaUUpRoFUsyaBZHQKCKHLqUu+R1fZQoaAZoCWgPQwiKdD+nIL/0v5SGlFKUaBVLMmgWR0Cgie+1KGtZdX2UKGgGaAloD0MIflcE/1tJ+b+UhpRSlGgVSzJoFkdAoItB4QjD9HV9lChoBmgJaA9DCE2EDU+vFPm/lIaUUpRoFUsyaBZHQKCLFLJ0W/J1fZQoaAZoCWgPQwiFQC5x5IESwJSGlFKUaBVLMmgWR0Cgiud8JD3NdX2UKGgGaAloD0MIzQTDuYa5A8CUhpRSlGgVSzJoFkdAoIq6curZJ3V9lChoBmgJaA9DCIE+kSdJFxDAlIaUUpRoFUsyaBZHQKCMBmQKa5R1fZQoaAZoCWgPQwjPhCaJJWX4v5SGlFKUaBVLMmgWR0Cgi9kGA09AdX2UKGgGaAloD0MIjIaMR6mkBMCUhpRSlGgVSzJoFkdAoIur0Fr2x3V9lChoBmgJaA9DCBPU8C2sm/i/lIaUUpRoFUsyaBZHQKCLfsfq5b11fZQoaAZoCWgPQwhhqMMKt1wDwJSGlFKUaBVLMmgWR0CgjM2QXAM2dX2UKGgGaAloD0MI2VvK+WIv9b+UhpRSlGgVSzJoFkdAoIygKMNtqHV9lChoBmgJaA9DCCY5YFeT5/a/lIaUUpRoFUsyaBZHQKCMcwfQrtp1fZQoaAZoCWgPQwhuh4bFqKv9v5SGlFKUaBVLMmgWR0CgjEYD9wWFdX2UKGgGaAloD0MIskY9RKO79b+UhpRSlGgVSzJoFkdAoI2RDgIhQnV9lChoBmgJaA9DCCL+YUuPhhHAlIaUUpRoFUsyaBZHQKCNY6GQCCB1fZQoaAZoCWgPQwjt9IO6SKEJwJSGlFKUaBVLMmgWR0CgjTZftx+8dX2UKGgGaAloD0MIGeYEbXI4+r+UhpRSlGgVSzJoFkdAoI0Jk078vXV9lChoBmgJaA9DCMH+69y0mQPAlIaUUpRoFUsyaBZHQKCOV1ct5D91fZQoaAZoCWgPQwifq63YX3YPwJSGlFKUaBVLMmgWR0CgjinyEtdzdX2UKGgGaAloD0MIRwA3ixfL+r+UhpRSlGgVSzJoFkdAoI38sH0K7nV9lChoBmgJaA9DCHF1AMRdPfO/lIaUUpRoFUsyaBZHQKCNz6IFeOZ1fZQoaAZoCWgPQwib/uxHivgUwJSGlFKUaBVLMmgWR0CgjxcoH9m6dX2UKGgGaAloD0MIVtehmpIMAsCUhpRSlGgVSzJoFkdAoI7pwMpgC3V9lChoBmgJaA9DCOW4UzpYf/m/lIaUUpRoFUsyaBZHQKCOvLJ0W/J1fZQoaAZoCWgPQwg4aRoUzcP2v5SGlFKUaBVLMmgWR0Cgjo+sxO+JdX2UKGgGaAloD0MIu5hmutfJCsCUhpRSlGgVSzJoFkdAoI/c2rGR3nV9lChoBmgJaA9DCEAxsmSOZfa/lIaUUpRoFUsyaBZHQKCPr3Dej211fZQoaAZoCWgPQwgMzXUaaQkCwJSGlFKUaBVLMmgWR0Cgj4I24uscdX2UKGgGaAloD0MIilsFMdD1/r+UhpRSlGgVSzJoFkdAoI9VQCSzPnV9lChoBmgJaA9DCN4CCYofgwfAlIaUUpRoFUsyaBZHQKCQoRzRx951fZQoaAZoCWgPQwhEozuInSn9v5SGlFKUaBVLMmgWR0CgkHOoYNy6dX2UKGgGaAloD0MIbagY529iBMCUhpRSlGgVSzJoFkdAoJBGbAk9lnV9lChoBmgJaA9DCNz0Zz9SZAbAlIaUUpRoFUsyaBZHQKCQGal1r7B1fZQoaAZoCWgPQwhSnnk57N4IwJSGlFKUaBVLMmgWR0CgkWhiCrcTdX2UKGgGaAloD0MIGsQHdvzXAMCUhpRSlGgVSzJoFkdAoJE6+WWyDHV9lChoBmgJaA9DCBIWFXE6if2/lIaUUpRoFUsyaBZHQKCRDg4Otnx1fZQoaAZoCWgPQwgqHaz/c3gDwJSGlFKUaBVLMmgWR0CgkOD+R5kcdX2UKGgGaAloD0MITBk4oKU7EMCUhpRSlGgVSzJoFkdAoJIi6nR9gHV9lChoBmgJaA9DCOpYpfRMrwvAlIaUUpRoFUsyaBZHQKCR9W6shgV1fZQoaAZoCWgPQwiiCKnb2VcEwJSGlFKUaBVLMmgWR0Cgkcg0j1PFdX2UKGgGaAloD0MIiXjr/Nvl/L+UhpRSlGgVSzJoFkdAoJGbQZ4wAXV9lChoBmgJaA9DCKn5KvnYLRLAlIaUUpRoFUsyaBZHQKCS44QSSNh1fZQoaAZoCWgPQwigNqrTgWwDwJSGlFKUaBVLMmgWR0CgkrYjbBXTdX2UKGgGaAloD0MIj6uRXWlZ8r+UhpRSlGgVSzJoFkdAoJKI+bExZnV9lChoBmgJaA9DCPBOPj225fS/lIaUUpRoFUsyaBZHQKCSXAN5MUR1fZQoaAZoCWgPQwhq9kArMCQDwJSGlFKUaBVLMmgWR0Cgk64oAn2JdX2UKGgGaAloD0MIMJxrmKHx/b+UhpRSlGgVSzJoFkdAoJOAuh9LH3V9lChoBmgJaA9DCMHlsWZk0Pq/lIaUUpRoFUsyaBZHQKCTU4YJmd11fZQoaAZoCWgPQwie7dEb7oMAwJSGlFKUaBVLMmgWR0CgkyaTW5H3dX2UKGgGaAloD0MIa0YGuYvwCcCUhpRSlGgVSzJoFkdAoJRugOBlMHV9lChoBmgJaA9DCAVTzaylIAPAlIaUUpRoFUsyaBZHQKCUQRL9MsZ1fZQoaAZoCWgPQwjLEwg7xWoFwJSGlFKUaBVLMmgWR0CglBPWQOnVdX2UKGgGaAloD0MIjEtV2uK6CsCUhpRSlGgVSzJoFkdAoJPm9YfW+XV9lChoBmgJaA9DCOOL9nghPQjAlIaUUpRoFUsyaBZHQKCVMnaWX1J1fZQoaAZoCWgPQwjS5c3hWo0EwJSGlFKUaBVLMmgWR0CglQUN8VpLdX2UKGgGaAloD0MImWclrfgmDsCUhpRSlGgVSzJoFkdAoJTX0f5k9XV9lChoBmgJaA9DCNriGp/JngLAlIaUUpRoFUsyaBZHQKCUqsny/bl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-1086-aws-x86_64-with-glibc2.29 # 93~18.04.1-Ubuntu SMP Fri Sep 23 17:19:00 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (742 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.805347713455558, "std_reward": 1.1179314366267121, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-22T06:57:25.454978"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e471ca109997f1c1f8fe4a0a6d783495fb639bf5a9c76cb998aa9f5ac1d5168c
|
3 |
+
size 3056
|