Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,107 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- birder
|
5 |
+
- pytorch
|
6 |
+
library_name: birder
|
7 |
+
license: apache-2.0
|
8 |
+
---
|
9 |
+
|
10 |
+
# Model Card for van_b2_arabian-peninsula
|
11 |
+
|
12 |
+
An VAN image classification model. This model was trained on the `arabian-peninsula` dataset (all the relevant bird species found in the Arabian peninsula inc. rarities).
|
13 |
+
|
14 |
+
The species list is derived from data available at <https://avibase.bsc-eoc.org/checklist.jsp?region=ARA>.
|
15 |
+
|
16 |
+
Note: A 256 x 256 variant of this model is available as `van_b2_arabian-peninsula256px`.
|
17 |
+
|
18 |
+
## Model Details
|
19 |
+
|
20 |
+
- **Model Type:** Image classification and detection backbone
|
21 |
+
- **Model Stats:**
|
22 |
+
- Params (M): 26.4
|
23 |
+
- Input image size: 384 x 384
|
24 |
+
- **Dataset:** arabian-peninsula (735 classes)
|
25 |
+
|
26 |
+
- **Papers:**
|
27 |
+
- Visual Attention Network: <https://arxiv.org/abs/2202.09741>
|
28 |
+
|
29 |
+
## Model Usage
|
30 |
+
|
31 |
+
### Image Classification
|
32 |
+
|
33 |
+
```python
|
34 |
+
import birder
|
35 |
+
from birder.inference.classification import infer_image
|
36 |
+
|
37 |
+
(net, model_info) = birder.load_pretrained_model("van_b2_arabian-peninsula", inference=True)
|
38 |
+
# Note: A 256x256 variant is available as "van_b2_arabian-peninsula256px"
|
39 |
+
|
40 |
+
# Get the image size the model was trained on
|
41 |
+
size = birder.get_size_from_signature(model_info.signature)
|
42 |
+
|
43 |
+
# Create an inference transform
|
44 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
45 |
+
|
46 |
+
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
47 |
+
(out, _) = infer_image(net, image, transform)
|
48 |
+
# out is a NumPy array with shape of (1, 735), representing class probabilities.
|
49 |
+
```
|
50 |
+
|
51 |
+
### Image Embeddings
|
52 |
+
|
53 |
+
```python
|
54 |
+
import birder
|
55 |
+
from birder.inference.classification import infer_image
|
56 |
+
|
57 |
+
(net, model_info) = birder.load_pretrained_model("van_b2_arabian-peninsula", inference=True)
|
58 |
+
|
59 |
+
# Get the image size the model was trained on
|
60 |
+
size = birder.get_size_from_signature(model_info.signature)
|
61 |
+
|
62 |
+
# Create an inference transform
|
63 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
64 |
+
|
65 |
+
image = "path/to/image.jpeg" # or a PIL image
|
66 |
+
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
67 |
+
# embedding is a NumPy array with shape of (1, 512)
|
68 |
+
```
|
69 |
+
|
70 |
+
### Detection Feature Map
|
71 |
+
|
72 |
+
```python
|
73 |
+
from PIL import Image
|
74 |
+
import birder
|
75 |
+
|
76 |
+
(net, model_info) = birder.load_pretrained_model("van_b2_arabian-peninsula", inference=True)
|
77 |
+
|
78 |
+
# Get the image size the model was trained on
|
79 |
+
size = birder.get_size_from_signature(model_info.signature)
|
80 |
+
|
81 |
+
# Create an inference transform
|
82 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
83 |
+
|
84 |
+
image = Image.open("path/to/image.jpeg")
|
85 |
+
features = net.detection_features(transform(image).unsqueeze(0))
|
86 |
+
# features is a dict (stage name -> torch.Tensor)
|
87 |
+
print([(k, v.size()) for k, v in features.items()])
|
88 |
+
# Output example:
|
89 |
+
# [('stage1', torch.Size([1, 64, 64, 64])),
|
90 |
+
# ('stage2', torch.Size([1, 128, 32, 32])),
|
91 |
+
# ('stage3', torch.Size([1, 320, 16, 16])),
|
92 |
+
# ('stage4', torch.Size([1, 512, 8, 8]))]
|
93 |
+
```
|
94 |
+
|
95 |
+
## Citation
|
96 |
+
|
97 |
+
```bibtex
|
98 |
+
@misc{guo2022visualattentionnetwork,
|
99 |
+
title={Visual Attention Network},
|
100 |
+
author={Meng-Hao Guo and Cheng-Ze Lu and Zheng-Ning Liu and Ming-Ming Cheng and Shi-Min Hu},
|
101 |
+
year={2022},
|
102 |
+
eprint={2202.09741},
|
103 |
+
archivePrefix={arXiv},
|
104 |
+
primaryClass={cs.CV},
|
105 |
+
url={https://arxiv.org/abs/2202.09741},
|
106 |
+
}
|
107 |
+
```
|