Update README.md
Browse files
README.md
CHANGED
@@ -6,47 +6,124 @@ tags:
|
|
6 |
model-index:
|
7 |
- name: speecht5_tts-wolof-v0.2
|
8 |
results: []
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
|
12 |
-
should probably proofread and complete it, then remove this comment. -->
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
-
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.3938
|
19 |
|
20 |
-
|
21 |
|
22 |
-
|
23 |
|
24 |
-
##
|
25 |
|
26 |
-
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
- learning_rate: 1e-05
|
38 |
-
- train_batch_size: 16
|
39 |
-
- eval_batch_size: 8
|
40 |
-
- seed: 42
|
41 |
-
- gradient_accumulation_steps: 2
|
42 |
-
- total_train_batch_size: 32
|
43 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
-
- lr_scheduler_type: linear
|
45 |
-
- lr_scheduler_warmup_steps: 500
|
46 |
-
- num_epochs: 30
|
47 |
-
- mixed_precision_training: Native AMP
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss |
|
52 |
|:-------------:|:-------:|:-----:|:---------------:|
|
@@ -66,9 +143,9 @@ The following hyperparameters were used during training:
|
|
66 |
| 0.4225 | 14.0 | 13363 | 0.3966 |
|
67 |
| 0.4217 | 14.9995 | 14317 | 0.3951 |
|
68 |
| 0.4208 | 16.0 | 15272 | 0.3950 |
|
69 |
-
| 0.
|
70 |
| 0.4202 | 18.0 | 17181 | 0.3952 |
|
71 |
-
| 0.
|
72 |
| 0.4183 | 20.0 | 19090 | 0.3962 |
|
73 |
| 0.4175 | 20.9995 | 20044 | 0.3937 |
|
74 |
| 0.4161 | 22.0 | 20999 | 0.3940 |
|
@@ -77,10 +154,19 @@ The following hyperparameters were used during training:
|
|
77 |
| 0.4166 | 24.9995 | 23862 | 0.3936 |
|
78 |
| 0.4156 | 26.0 | 24817 | 0.3938 |
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
- Pytorch 2.4.0+cu121
|
85 |
-
- Datasets 3.2.0
|
86 |
-
- Tokenizers 0.19.1
|
|
|
6 |
model-index:
|
7 |
- name: speecht5_tts-wolof-v0.2
|
8 |
results: []
|
9 |
+
language:
|
10 |
+
- wo
|
11 |
+
- en
|
12 |
+
pipeline_tag: text-to-speech
|
13 |
---
|
14 |
|
15 |
+
# **speecht5_tts-wolof-v0.2**
|
|
|
16 |
|
17 |
+
This model is a fine-tuned version of [speecht5_tts-wolof](https://huggingface.co/bilalfaye/speecht5_tts-wolof) that enhances Text-to-Speech (TTS) synthesis for both **Wolof and French**. It is based on Microsoft's [SpeechT5](https://huggingface.co/microsoft/speecht5_tts) and incorporates a **custom tokenizer** and additional fine-tuning to improve performance across these two languages.
|
18 |
|
19 |
+
## **Model Description**
|
|
|
|
|
20 |
|
21 |
+
This model builds upon the `SpeechT5` architecture, which unifies speech recognition and synthesis. The fine-tuning process introduced modifications to the original Wolof model, enabling it to **generate natural speech in both Wolof and French**. The model maintains the same general structure but **learns a more robust alignment** between textual inputs and speech synthesis, improving pronunciation and fluency in both languages.
|
22 |
|
23 |
+
---
|
24 |
|
25 |
+
## **Installation Instructions for Users**
|
26 |
|
27 |
+
To install the necessary dependencies, run the following command:
|
28 |
|
29 |
+
```bash
|
30 |
+
pip install transformers datasets torch
|
31 |
+
```
|
32 |
|
33 |
+
## **Model Loading and Speech Generation Code**
|
34 |
|
35 |
+
```python
|
36 |
+
import torch
|
37 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5Processor, SpeechT5HifiGan
|
38 |
+
from datasets import load_dataset
|
39 |
+
from IPython.display import Audio, display
|
40 |
|
41 |
+
def load_speech_model(checkpoint="bilalfaye/speecht5_tts-wolof-v0.2", vocoder_checkpoint="microsoft/speecht5_hifigan"):
|
42 |
+
""" Load the SpeechT5 model, processor, and vocoder for text-to-speech. """
|
43 |
+
|
44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
|
46 |
+
processor = SpeechT5Processor.from_pretrained(checkpoint)
|
47 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint).to(device)
|
48 |
+
vocoder = SpeechT5HifiGan.from_pretrained(vocoder_checkpoint).to(device)
|
49 |
|
50 |
+
return processor, model, vocoder, device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# Load the model
|
53 |
+
processor, model, vocoder, device = load_speech_model()
|
54 |
+
|
55 |
+
# Load speaker embeddings (pretrained from CMU Arctic dataset)
|
56 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
57 |
+
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
58 |
+
|
59 |
+
def generate_speech_from_text(text, speaker_embedding=speaker_embedding, processor=processor, model=model, vocoder=vocoder):
|
60 |
+
""" Generates speech from input text using SpeechT5 and HiFi-GAN vocoder. """
|
61 |
+
|
62 |
+
inputs = processor(text=text, return_tensors="pt", padding=True, truncation=True, max_length=model.config.max_text_positions)
|
63 |
+
inputs = {key: value.to(model.device) for key, value in inputs.items()}
|
64 |
+
|
65 |
+
speech = model.generate(
|
66 |
+
inputs["input_ids"],
|
67 |
+
speaker_embeddings=speaker_embedding.to(model.device),
|
68 |
+
vocoder=vocoder,
|
69 |
+
num_beams=7,
|
70 |
+
temperature=0.6,
|
71 |
+
no_repeat_ngram_size=3,
|
72 |
+
repetition_penalty=1.5,
|
73 |
+
)
|
74 |
+
|
75 |
+
speech = speech.detach().cpu().numpy()
|
76 |
+
display(Audio(speech, rate=16000))
|
77 |
+
|
78 |
+
# Example usage French
|
79 |
+
text = "Bonjour, bienvenue dans le modèle de synthèse vocale Wolof et Français."
|
80 |
+
generate_speech_from_text(text)
|
81 |
+
|
82 |
+
# Example usage Wolof
|
83 |
+
text = "ñu ne ñoom ñooy nattukaay satélite yi"
|
84 |
+
generate_speech_from_text(text)
|
85 |
+
```
|
86 |
+
|
87 |
+
---
|
88 |
+
|
89 |
+
## **Intended Uses & Limitations**
|
90 |
+
|
91 |
+
### **Intended Uses**
|
92 |
+
- **Multilingual TTS:** Converts **Wolof and French** text into natural-sounding speech.
|
93 |
+
- **Voice Assistants & Speech Interfaces:** Can be used for **audio-based applications** supporting both languages.
|
94 |
+
- **Linguistic Research:** Facilitates speech synthesis research in low-resource languages.
|
95 |
+
|
96 |
+
### **Limitations**
|
97 |
+
- **Data Dependency:** The quality of synthesized speech depends on the dataset used for fine-tuning.
|
98 |
+
- **Pronunciation Variations:** Some complex or uncommon words may be mispronounced.
|
99 |
+
- **Limited Speaker Variety:** The model was trained on a single speaker embedding and may not generalize well to different voice profiles.
|
100 |
+
|
101 |
+
---
|
102 |
+
|
103 |
+
## **Training and Evaluation Data**
|
104 |
+
|
105 |
+
The model was fine-tuned on an extended dataset containing text in both **Wolof and French**, ensuring improved synthesis capabilities across these two languages.
|
106 |
+
|
107 |
+
---
|
108 |
+
|
109 |
+
## **Training Procedure**
|
110 |
+
|
111 |
+
### **Training Hyperparameters**
|
112 |
+
|
113 |
+
| Hyperparameter | Value |
|
114 |
+
|----------------------------|---------|
|
115 |
+
| Learning Rate | 1e-05 |
|
116 |
+
| Training Batch Size | 8 |
|
117 |
+
| Evaluation Batch Size | 2 |
|
118 |
+
| Gradient Accumulation Steps| 8 |
|
119 |
+
| Total Train Batch Size | 64 |
|
120 |
+
| Optimizer | Adam (β1=0.9, β2=0.999, ϵ=1e-08) |
|
121 |
+
| Learning Rate Scheduler | Linear |
|
122 |
+
| Warmup Steps | 500 |
|
123 |
+
| Training Steps | 25,500 |
|
124 |
+
| Mixed Precision Training | AMP (Automatic Mixed Precision) |
|
125 |
+
|
126 |
+
### **Training Results**
|
127 |
|
128 |
| Training Loss | Epoch | Step | Validation Loss |
|
129 |
|:-------------:|:-------:|:-----:|:---------------:|
|
|
|
143 |
| 0.4225 | 14.0 | 13363 | 0.3966 |
|
144 |
| 0.4217 | 14.9995 | 14317 | 0.3951 |
|
145 |
| 0.4208 | 16.0 | 15272 | 0.3950 |
|
146 |
+
| 0.4200 | 16.9995 | 16226 | 0.3950 |
|
147 |
| 0.4202 | 18.0 | 17181 | 0.3952 |
|
148 |
+
| 0.4200 | 18.9995 | 18135 | 0.3943 |
|
149 |
| 0.4183 | 20.0 | 19090 | 0.3962 |
|
150 |
| 0.4175 | 20.9995 | 20044 | 0.3937 |
|
151 |
| 0.4161 | 22.0 | 20999 | 0.3940 |
|
|
|
154 |
| 0.4166 | 24.9995 | 23862 | 0.3936 |
|
155 |
| 0.4156 | 26.0 | 24817 | 0.3938 |
|
156 |
|
157 |
+
---
|
158 |
+
|
159 |
+
## **Framework Versions**
|
160 |
+
|
161 |
+
- **Transformers**: 4.41.2
|
162 |
+
- **PyTorch**: 2.4.0+cu121
|
163 |
+
- **Datasets**: 3.2.0
|
164 |
+
- **Tokenizers**: 0.19.1
|
165 |
+
|
166 |
+
---
|
167 |
+
|
168 |
+
## **Author**
|
169 |
|
170 |
+
- **Bilal FAYE**
|
171 |
|
172 |
+
This model contributes to **enhancing TTS accessibility** for Wolof and French, making it a valuable resource for multilingual voice applications. 🚀
|
|
|
|
|
|