Update README.md
Browse files
README.md
CHANGED
@@ -14,4 +14,39 @@ widget:
|
|
14 |
|
15 |
# Model Card for Model ID
|
16 |
|
17 |
-
This is a continue-pretrained version of [Tinyllama](TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) tailored for traditional Chinese. The continue-pretraining dataset contains roughly 2B tokens.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Model Card for Model ID
|
16 |
|
17 |
+
This is a continue-pretrained version of [Tinyllama](TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) tailored for traditional Chinese. The continue-pretraining dataset contains roughly 2B tokens.
|
18 |
+
|
19 |
+
# Usage
|
20 |
+
```python
|
21 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
22 |
+
import torch
|
23 |
+
|
24 |
+
def generate_response(input):
|
25 |
+
'''
|
26 |
+
simple test for the model
|
27 |
+
'''
|
28 |
+
# tokenzize the input
|
29 |
+
tokenized_input = tokenizer.encode_plus(input, return_tensors='pt').to(device)
|
30 |
+
|
31 |
+
# generate the response
|
32 |
+
outputs = model.generate(
|
33 |
+
input_ids=tokenized_input['input_ids'],
|
34 |
+
attention_mask=tokenized_input['attention_mask'],
|
35 |
+
pad_token_id=tokenizer.pad_token_id,
|
36 |
+
do_sample=False,
|
37 |
+
repetition_penalty=1.3,
|
38 |
+
max_length=500
|
39 |
+
)
|
40 |
+
|
41 |
+
# decode the response
|
42 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
+
|
44 |
+
if __name__ == '__main__':
|
45 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
46 |
+
model = AutoModelForCausalLM.from_pretrained("benchang1110/Taiwan-tinyllama-v1.0-base",device_map=device,torch_dtype=torch.bfloat16)
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained("benchang1110/Taiwan-tinyllama-v1.0-base")
|
48 |
+
while(True):
|
49 |
+
text = input("input a simple prompt:")
|
50 |
+
print('System:', generate_response(text))
|
51 |
+
```
|
52 |
+
Using bfloat16, the VRAM required is around 3GB!!!
|