Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,170 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
|
|
12 |
## Model Details
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources [optional]
|
29 |
|
30 |
-
|
|
|
31 |
|
32 |
-
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
39 |
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
|
45 |
|
46 |
-
###
|
47 |
|
48 |
-
|
|
|
|
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
|
|
|
|
|
55 |
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
-
|
|
|
|
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
|
125 |
-
[More Information Needed]
|
126 |
|
127 |
-
|
128 |
|
129 |
-
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
|
|
|
|
|
159 |
### Compute Infrastructure
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
datasets:
|
4 |
+
- benchang1110/TaiVision-pretrain-1M-v2.0
|
5 |
+
language:
|
6 |
+
- zh
|
7 |
+
pipeline_tag: image-text-to-text
|
8 |
---
|
9 |
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Model Card for Model ID
|
12 |
|
13 |
+
![TaivisionLM](TaivisionLM.png)
|
14 |
## Model Details
|
15 |
|
16 |
+
## English
|
17 |
+
# TaiVisionLM: The First of Its Kind! 🚀
|
18 |
|
19 |
+
🌟 This is a small (only 1.2B parameters) visual language model on Hugging Face that responds to Traditional Chinese instructions given an image input! 🌟
|
20 |
|
21 |
+
✨ Developed compatible with the Transformers library, TaiVisionLM is quick to load, fine-tune, and use for lightning-fast inferences without needing any external libraries! ⚡️
|
22 |
|
23 |
+
Ready to experience the Traditional Chinese visual language model? Let's go! 🖼️🤖
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
|
|
25 |
|
26 |
+
## 繁體中文
|
27 |
+
# 台視: 台灣視覺語言模型!! 🚀
|
28 |
|
29 |
+
🌟 TaiVisionLM 是一個小型的視覺語言模型(僅有 12 億參數),可以根據圖像輸入來回覆繁體中文指令!🌟
|
|
|
|
|
30 |
|
31 |
+
✨ TaiVisionLM 可以用 transformers 載入、微調和使用!⚡️
|
32 |
|
33 |
+
準備好體驗"臺視"了嗎?讓我們開始吧!🖼️🤖
|
34 |
|
|
|
35 |
|
|
|
36 |
|
37 |
+
---
|
38 |
|
39 |
+
### Model Description
|
40 |
|
41 |
+
## English
|
42 |
+
This model is a multimodal large language model that combines [SigLIP](https://huggingface.co/google/siglip-base-patch16-224) as its vision encoder with [Tinyllama](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat) as its language model. The vision projector connects the two modalities together.
|
43 |
+
Its architecture closely resembles [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma).
|
44 |
|
45 |
+
Here's the summary of the development process:
|
46 |
|
47 |
+
1) **Unimodal pretraining**
|
48 |
+
- In this stage, instead of pretraining both modalities from scratch, I leverage the image encoder from [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224) and the language model trained by ourselves (https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat).
|
49 |
+
2) **Feature Alignment**
|
50 |
+
- We trained the vision projector and language model using LoRA using 1M image-text pairs to align visual and textual features.
|
51 |
+
This model is the finetuned version of [benchang1110/TaiVisionLM-base-v1](https://huggingface.co/benchang1110/TaiVisionLM-base-v1). We fintuned the model using 1M image-text pairs. The finetuned model will generate a longer and more detailed description of the image.
|
52 |
|
53 |
+
3) **Task Specific Training**
|
54 |
+
- The aligned model undergoes further training for tasks such as short captioning, detailed captioning, and simple visual question answering.
|
55 |
+
We will undergo this stage after the dataset is ready!
|
56 |
|
|
|
57 |
|
58 |
+
- **Developed by:** [benchang1110](https://huggingface.co/benchang1110)
|
59 |
+
- **Model type:** [Image-Text-to-Text](https://huggingface.co/tasks/image-text-to-text)
|
60 |
+
- **Language(s) (NLP):** *Traditional Chinese*
|
61 |
|
62 |
+
## 繁體中文
|
63 |
+
這個模型是一個多模態的語言模型,結合了 [SigLIP](https://huggingface.co/docs/transformers/en/model_doc/siglip) 作為其視覺編碼器,並使用 [Tinyllama](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat) 作為語言模型。視覺投影器將這兩種模態結合在一起。
|
64 |
+
其架構與 [PaliGemma](https://huggingface.co/docs/transformers/v4.44.0/model_doc/paligemma) 非常相似。
|
65 |
|
66 |
+
以下是開發過程的摘要:
|
67 |
|
68 |
+
1) **單模態預訓練**
|
69 |
+
- 在這個階段,我���用了 [google/siglip-base-patch16-224-multilingual](https://huggingface.co/google/siglip-base-patch16-224-multilingual) 的圖像編碼器,以及我們自己訓練的語言模型([Taiwan-tinyllama-v1.0-chat](https://huggingface.co/benchang1110/Taiwan-tinyllama-v1.0-chat))。
|
70 |
+
2) **特徵對齊**
|
71 |
+
- 我們使用了100萬個圖片和文本的配對來訓練圖像投影器 (visual projector),並使用 LoRA 來微調語言模型的權重。
|
72 |
+
這個模型是 [benchang1110/TaiVisionLM-base-v1](https://huggingface.co/benchang1110/TaiVisionLM-base-v1) 的微調版本。我們使用了100萬個圖片和文本的配對來微調模型。微調後的模型將生成更長、更詳細的圖片描述。
|
73 |
+
3) **任務特定訓練**
|
74 |
+
- 對齊後的模型將進行進一步的訓練,針對短描述、詳細描述和簡單視覺問答等任務。我們將在數據集準備好後進行這一階段的訓練!
|
75 |
|
|
|
76 |
|
77 |
+
- **創作者:** [benchang1110](https://huggingface.co/benchang1110)
|
78 |
+
- **模型類型:** [Image-Text-to-Text](https://huggingface.co/tasks/image-text-to-text)
|
79 |
+
- **語言:** 繁體中文
|
80 |
+
|
81 |
+
---
|
82 |
|
83 |
## How to Get Started with the Model
|
84 |
|
85 |
+
## English
|
86 |
+
|
87 |
+
In Transformers, you can load the model and do inference as follows:
|
88 |
+
|
89 |
+
**IMPORTANT NOTE:** TaiVisionLM model is not yet integrated natively into the Transformers library. So you need to set ```trust_remote_code=True``` when loading the model. It will download the ```configuration_taivisionlm.py```, ```modeling_taivisionlm.py``` and ```processing_taivisionlm.py``` files from the repo. You can check out the content of these files under the *Files and Versions* tab and pin the specific versions if you have any concerns regarding malicious code.
|
90 |
+
|
91 |
+
```python
|
92 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig
|
93 |
+
from PIL import Image
|
94 |
+
import requests
|
95 |
+
import torch
|
96 |
+
config = AutoConfig.from_pretrained("benchang1110/TaiVisionLM-base-v2",trust_remote_code=True)
|
97 |
+
processor = AutoProcessor.from_pretrained("benchang1110/TaiVisionLM-base-v2",trust_remote_code=True)
|
98 |
+
model = AutoModelForCausalLM.from_pretrained("benchang1110/TaiVisionLM-base-v2",trust_remote_code=True,torch_dtype=torch.float16,attn_implementation="sdpa").to('cuda')
|
99 |
+
model.eval()
|
100 |
+
url = "https://media.wired.com/photos/598e35fb99d76447c4eb1f28/master/pass/phonepicutres-TA.jpg"
|
101 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
102 |
+
text = "描述圖片"
|
103 |
+
inputs = processor(text=text,images=image, return_tensors="pt",padding=False).to('cuda')
|
104 |
+
outputs = processor.tokenizer.decode(model.generate(**inputs,max_length=512)[0])
|
105 |
+
print(outputs)
|
106 |
+
```
|
107 |
+
|
108 |
+
## 中文
|
109 |
+
利用 transformers,可以用下面程式碼進行推論:
|
110 |
+
|
111 |
+
**重要通知:** 台視 (TaiVisionLM) 還沒被整合進transformers,因此在下載模型時要使用 ```trust_remote_code=True```,下載模型將會使用```configuration_taivisionlm.py```、 ```modeling_taivisionlm.py``` 和 ```processing_taivisionlm.py``` 這三個檔案,若擔心有惡意程式碼,請先點選右方 *Files and Versions* 來查看程式碼內容。
|
112 |
+
|
113 |
+
```python
|
114 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig
|
115 |
+
from PIL import Image
|
116 |
+
import requests
|
117 |
+
import torch
|
118 |
+
config = AutoConfig.from_pretrained("benchang1110/TaiVisionLM-base-v2",trust_remote_code=True)
|
119 |
+
processor = AutoProcessor.from_pretrained("benchang1110/TaiVisionLM-base-v2",trust_remote_code=True)
|
120 |
+
model = AutoModelForCausalLM.from_pretrained("benchang1110/TaiVisionLM-base-v2",trust_remote_code=True,torch_dtype=torch.float16,attn_implementation="sdpa").to('cuda')
|
121 |
+
model.eval()
|
122 |
+
url = "https://media.wired.com/photos/598e35fb99d76447c4eb1f28/master/pass/phonepicutres-TA.jpg"
|
123 |
+
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
|
124 |
+
text = "描述圖片"
|
125 |
+
inputs = processor(text=text,images=image, return_tensors="pt",padding=False).to('cuda')
|
126 |
+
outputs = processor.tokenizer.decode(model.generate(**inputs,max_length=512)[0])
|
127 |
+
print(outputs)
|
128 |
+
```
|
129 |
+
|
130 |
+
|
131 |
+
### Comparision with prior model ([benchang1110/TaiVisionLM-base-v1](https://huggingface.co/benchang1110/TaiVisionLM-base-v1))
|
132 |
+
|
133 |
+
- **Example 1**
|
134 |
+
![smile](https://www.slidecow.com/wp-content/uploads/2018/04/Setting-Up-The-Slide-Text-1000x563.jpg)
|
135 |
+
* TaiVisionLM-base-v1:
|
136 |
+
卡通插圖描繪掛在家門口的標誌,上下方以卡通插圖的方式呈現。
|
137 |
+
* TaiVisionLM-base-v2:
|
138 |
+
這張圖描繪了一個單詞「SMILE」經典的卡通字體。該字表面��黑白的主要色彩調色板。詞以貫穿其身體的光滑線條字體書寫。該字具有模糊的質感,與單詞形成平滑而簡約的視覺效果。
|
139 |
+
字母「「SMILE」」自豪地表示。顯眼的文字是圖片的焦點,吸引觀眾的注意力到其具有簡潔性的方式。該字在白色背景上顯眼地展示,與黑色字體形成鮮明對比。
|
140 |
+
圖片中沒有其他物品或文字。字和底部的文字並沒有提供有關詞「「SMILE」具體含義的任何其他背景信息。然而,詞「「SMILE」」的整體設計使其成為這張影像中的焦點,吸引了注意力到其獨特形狀。圖片中沒有其他物品或文字。
|
141 |
+
|
142 |
+
|
143 |
+
- **Example 2**
|
144 |
+
![paris](https://static.toiimg.com/thumb/msid-53891743,width-748,height-499,resizemode=4,imgsize-152022/.jpg)
|
145 |
+
* TaiVisionLM-base-v1:
|
146 |
+
這是一幅攝影作品,展示了巴黎的鐵塔被水景所環繞
|
147 |
+
* TaiVisionLM-base-v2:
|
148 |
+
這張照片捕捉了巴黎,法國標誌性的塔樓和人行道景觀的令人驚嘆的景象。塔樓高聳在清澈的藍天沿著舊有大路的背景之上。它是一座高聳入雲的圓頂金屬圖案,高度被分數精確錯量。塔樓由金屬和石頭結構組成,其統一的形狀證明了其歷史意義。
|
149 |
+
塔樓東面延伸的人行道向遠處延伸,邀請路人探索它所有的美麗。這條人行道上排列著樹木,它們翠綠的葉片與藍天形成鮮明的對比。它們的存在為場景增添了一抹綠意,為都市景觀增添了一抹自然元素。
|
150 |
+
背景中可以看到巴黎城市景觀。各種大小和設計的建築物可以看到,它們矗立在背景中,它們的建築藝術被塔樓和人行道的視野所突顯。天空是一個清澈的藍色,它延伸到遠方,沒有任何雲彩的陰影。
|
151 |
+
|
152 |
+
這張照片是巴黎豐富歷史和現代性的一個見證。塔樓和人行道標誌著這座經典都市的地標,高聳主權人偶的高度及其證據這座城市獨特的信仰。橫跨整張照片的人行道禮貌地介紹了城市的繁忙路線。
|
153 |
### Training Procedure
|
154 |
|
155 |
+
Since we don't have enough resources to train the model on the whole dataset, we only use 250k image-text pairs for training. The following training hyperparameters are used in feature alignment and task specific training stages respectively:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
157 |
|
158 |
+
- **Feature Alignment**
|
159 |
|
160 |
+
| Data size | Global Batch Size | Learning Rate | Epochs | Max Length | Weight Decay |
|
161 |
+
|--------------|-------------------|---------------|--------|------------|--------------|
|
162 |
+
| 250k | 2 | 5e-5 | 1 | 2048 | 1e-5 |
|
163 |
|
164 |
+
We use full-parameter finetuning for the projector and apply LoRA to the language model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
We will update the training procedure once we have more resources to train the model on the whole dataset.
|
167 |
+
![metric](metrics.png)
|
168 |
### Compute Infrastructure
|
169 |
+
- **Feature Alignment**
|
170 |
+
1xV100(32GB), took approximately 12 GPU hours.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|