---
library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-large-finetuned-kinetics
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: MAE-CT-M1N0-M12_v8_split4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MAE-CT-M1N0-M12_v8_split4

This model is a fine-tuned version of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4312
- Accuracy: 0.8267

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 6400

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.6773        | 0.0102  | 65   | 0.7109          | 0.4348   |
| 0.7393        | 1.0102  | 130  | 0.7720          | 0.4348   |
| 0.6483        | 2.0102  | 195  | 0.8131          | 0.4348   |
| 0.5872        | 3.0102  | 260  | 0.7178          | 0.4348   |
| 0.5612        | 4.0102  | 325  | 0.6203          | 0.6957   |
| 0.2855        | 5.0102  | 390  | 0.7647          | 0.3913   |
| 0.3332        | 6.0102  | 455  | 0.9563          | 0.3913   |
| 0.5376        | 7.0102  | 520  | 1.0380          | 0.4348   |
| 0.3236        | 8.0102  | 585  | 0.6013          | 0.7826   |
| 0.2583        | 9.0102  | 650  | 0.6642          | 0.6957   |
| 0.519         | 10.0102 | 715  | 0.8797          | 0.6522   |
| 0.2594        | 11.0102 | 780  | 0.8123          | 0.7391   |
| 0.2015        | 12.0102 | 845  | 1.2630          | 0.6522   |
| 0.3333        | 13.0102 | 910  | 1.4962          | 0.6087   |
| 0.1593        | 14.0102 | 975  | 1.1972          | 0.6957   |
| 0.1296        | 15.0102 | 1040 | 1.1893          | 0.7826   |
| 0.3097        | 16.0102 | 1105 | 1.5245          | 0.7391   |
| 0.1145        | 17.0102 | 1170 | 1.2979          | 0.7826   |
| 0.2288        | 18.0102 | 1235 | 1.7658          | 0.6957   |
| 0.0217        | 19.0102 | 1300 | 2.6377          | 0.6087   |
| 0.1368        | 20.0102 | 1365 | 1.6947          | 0.6957   |
| 0.1717        | 21.0102 | 1430 | 1.8905          | 0.6522   |
| 0.0014        | 22.0102 | 1495 | 2.1503          | 0.6522   |
| 0.012         | 23.0102 | 1560 | 2.0506          | 0.6522   |
| 0.0007        | 24.0102 | 1625 | 2.3373          | 0.6522   |
| 0.0001        | 25.0102 | 1690 | 1.6162          | 0.7391   |
| 0.0002        | 26.0102 | 1755 | 2.7662          | 0.6087   |
| 0.104         | 27.0102 | 1820 | 1.5637          | 0.7826   |
| 0.1848        | 28.0102 | 1885 | 3.6887          | 0.5217   |
| 0.0015        | 29.0102 | 1950 | 1.7133          | 0.6957   |
| 0.0001        | 30.0102 | 2015 | 2.1864          | 0.7391   |
| 0.0008        | 31.0102 | 2080 | 1.9452          | 0.7391   |
| 0.0002        | 32.0102 | 2145 | 1.7982          | 0.7391   |
| 0.0001        | 33.0102 | 2210 | 2.3272          | 0.6957   |
| 0.0072        | 34.0102 | 2275 | 2.5865          | 0.6957   |
| 0.275         | 35.0102 | 2340 | 4.0065          | 0.5652   |
| 0.0004        | 36.0102 | 2405 | 1.4350          | 0.7826   |
| 0.0001        | 37.0102 | 2470 | 1.8396          | 0.7826   |
| 0.1562        | 38.0102 | 2535 | 2.6788          | 0.6522   |
| 0.0001        | 39.0102 | 2600 | 2.0010          | 0.6957   |
| 0.0001        | 40.0102 | 2665 | 2.4220          | 0.6522   |
| 0.1117        | 41.0102 | 2730 | 2.3290          | 0.6957   |
| 0.0001        | 42.0102 | 2795 | 3.1235          | 0.5652   |
| 0.0001        | 43.0102 | 2860 | 2.9064          | 0.6087   |
| 0.0003        | 44.0102 | 2925 | 3.1359          | 0.6087   |
| 0.0007        | 45.0102 | 2990 | 3.1225          | 0.6087   |
| 0.0031        | 46.0102 | 3055 | 2.9252          | 0.6087   |
| 0.0           | 47.0102 | 3120 | 3.3919          | 0.5652   |
| 0.0003        | 48.0102 | 3185 | 2.8240          | 0.6957   |
| 0.0014        | 49.0102 | 3250 | 2.4431          | 0.5652   |
| 0.0001        | 50.0102 | 3315 | 2.2488          | 0.6957   |
| 0.0           | 51.0102 | 3380 | 2.6169          | 0.6087   |
| 0.0           | 52.0102 | 3445 | 2.4118          | 0.7391   |
| 0.0002        | 53.0102 | 3510 | 2.4928          | 0.5652   |
| 0.0001        | 54.0102 | 3575 | 3.6149          | 0.5652   |
| 0.0           | 55.0102 | 3640 | 3.2978          | 0.5652   |
| 0.0           | 56.0102 | 3705 | 2.9060          | 0.5217   |
| 0.1108        | 57.0102 | 3770 | 3.0361          | 0.6087   |
| 0.0           | 58.0102 | 3835 | 3.3929          | 0.6087   |
| 0.0           | 59.0102 | 3900 | 3.5174          | 0.5652   |
| 0.0007        | 60.0102 | 3965 | 2.1117          | 0.7391   |
| 0.0           | 61.0102 | 4030 | 3.5274          | 0.6087   |
| 0.0           | 62.0102 | 4095 | 3.5149          | 0.6087   |
| 0.0           | 63.0102 | 4160 | 3.4865          | 0.6087   |
| 0.0           | 64.0102 | 4225 | 3.2318          | 0.6087   |
| 0.0           | 65.0102 | 4290 | 3.1844          | 0.6087   |
| 0.0           | 66.0102 | 4355 | 3.2181          | 0.6087   |
| 0.0           | 67.0102 | 4420 | 3.2936          | 0.6087   |
| 0.0           | 68.0102 | 4485 | 3.3043          | 0.6087   |
| 0.0           | 69.0102 | 4550 | 3.1360          | 0.6522   |
| 0.0186        | 70.0102 | 4615 | 2.3659          | 0.7391   |
| 0.0           | 71.0102 | 4680 | 2.5226          | 0.7391   |
| 0.0           | 72.0102 | 4745 | 2.7737          | 0.6522   |
| 0.0           | 73.0102 | 4810 | 2.6730          | 0.6957   |
| 0.0           | 74.0102 | 4875 | 2.7865          | 0.6957   |
| 0.0           | 75.0102 | 4940 | 2.7922          | 0.6957   |
| 0.0           | 76.0102 | 5005 | 3.0552          | 0.6087   |
| 0.0           | 77.0102 | 5070 | 2.4933          | 0.7391   |
| 0.0044        | 78.0102 | 5135 | 2.1811          | 0.7391   |
| 0.0           | 79.0102 | 5200 | 1.9051          | 0.7826   |
| 0.0           | 80.0102 | 5265 | 1.8407          | 0.8261   |
| 0.0           | 81.0102 | 5330 | 2.1967          | 0.7826   |
| 0.0           | 82.0102 | 5395 | 2.3231          | 0.6957   |
| 0.0           | 83.0102 | 5460 | 2.3425          | 0.6957   |
| 0.0           | 84.0102 | 5525 | 2.8403          | 0.5652   |
| 0.0           | 85.0102 | 5590 | 2.3424          | 0.6957   |
| 0.0           | 86.0102 | 5655 | 2.4246          | 0.6957   |
| 0.0           | 87.0102 | 5720 | 2.4289          | 0.6957   |
| 0.0           | 88.0102 | 5785 | 2.4310          | 0.6957   |
| 0.0           | 89.0102 | 5850 | 2.4361          | 0.6957   |
| 0.0           | 90.0102 | 5915 | 2.3667          | 0.6957   |
| 0.0           | 91.0102 | 5980 | 2.3627          | 0.6957   |
| 0.0           | 92.0102 | 6045 | 2.3715          | 0.6957   |
| 0.0           | 93.0102 | 6110 | 2.3773          | 0.7391   |
| 0.0           | 94.0102 | 6175 | 2.4264          | 0.7391   |
| 0.0           | 95.0102 | 6240 | 2.4393          | 0.7391   |
| 0.0           | 96.0102 | 6305 | 2.4449          | 0.7391   |
| 0.0           | 97.0102 | 6370 | 2.4451          | 0.7391   |
| 0.0           | 98.0047 | 6400 | 2.4451          | 0.7391   |


### Framework versions

- Transformers 4.46.2
- Pytorch 2.0.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.0