File size: 7,842 Bytes
64f09f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resnet101-base_tobacco-cnn_tobacco3482_kd_CEKD_t5.0_a0.9
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resnet101-base_tobacco-cnn_tobacco3482_kd_CEKD_t5.0_a0.9

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8862
- Accuracy: 0.675
- Brier Loss: 0.4233
- Nll: 2.4267
- F1 Micro: 0.675
- F1 Macro: 0.6266
- Ece: 0.2528
- Aurc: 0.1205

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll    | F1 Micro | F1 Macro | Ece    | Aurc   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log        | 1.0   | 13   | 2.1186          | 0.165    | 0.8967     | 8.5414 | 0.165    | 0.1128   | 0.2087 | 0.8330 |
| No log        | 2.0   | 26   | 2.1139          | 0.14     | 0.8960     | 8.0889 | 0.14     | 0.0907   | 0.1924 | 0.8318 |
| No log        | 3.0   | 39   | 2.0743          | 0.195    | 0.8880     | 6.6316 | 0.195    | 0.1098   | 0.2224 | 0.7879 |
| No log        | 4.0   | 52   | 2.0101          | 0.205    | 0.8741     | 6.0411 | 0.205    | 0.0851   | 0.2448 | 0.7302 |
| No log        | 5.0   | 65   | 1.9697          | 0.22     | 0.8650     | 5.8808 | 0.22     | 0.1090   | 0.2441 | 0.7307 |
| No log        | 6.0   | 78   | 1.8642          | 0.27     | 0.8396     | 6.0693 | 0.27     | 0.1370   | 0.2742 | 0.6623 |
| No log        | 7.0   | 91   | 1.7716          | 0.35     | 0.8100     | 5.7342 | 0.35     | 0.1964   | 0.3131 | 0.4496 |
| No log        | 8.0   | 104  | 1.7580          | 0.33     | 0.8084     | 5.8902 | 0.33     | 0.1762   | 0.3185 | 0.5663 |
| No log        | 9.0   | 117  | 1.7346          | 0.425    | 0.8000     | 5.5871 | 0.425    | 0.2645   | 0.3466 | 0.3888 |
| No log        | 10.0  | 130  | 1.6557          | 0.365    | 0.7744     | 5.2246 | 0.3650   | 0.2256   | 0.2890 | 0.5081 |
| No log        | 11.0  | 143  | 1.5067          | 0.46     | 0.7014     | 4.7492 | 0.46     | 0.3053   | 0.3024 | 0.2923 |
| No log        | 12.0  | 156  | 1.5340          | 0.425    | 0.7212     | 4.4923 | 0.425    | 0.2746   | 0.2833 | 0.3650 |
| No log        | 13.0  | 169  | 1.5064          | 0.495    | 0.7111     | 4.1576 | 0.495    | 0.3443   | 0.3225 | 0.2907 |
| No log        | 14.0  | 182  | 1.4767          | 0.54     | 0.6972     | 3.7984 | 0.54     | 0.3804   | 0.3381 | 0.2831 |
| No log        | 15.0  | 195  | 1.3709          | 0.525    | 0.6453     | 3.7435 | 0.525    | 0.3771   | 0.3188 | 0.2541 |
| No log        | 16.0  | 208  | 1.3204          | 0.535    | 0.6223     | 3.4971 | 0.535    | 0.3919   | 0.3115 | 0.2424 |
| No log        | 17.0  | 221  | 1.4782          | 0.465    | 0.7008     | 3.4793 | 0.465    | 0.3731   | 0.3311 | 0.4138 |
| No log        | 18.0  | 234  | 1.3456          | 0.49     | 0.6523     | 3.3409 | 0.49     | 0.3839   | 0.2832 | 0.3570 |
| No log        | 19.0  | 247  | 1.2137          | 0.625    | 0.5708     | 3.4778 | 0.625    | 0.5087   | 0.3030 | 0.1904 |
| No log        | 20.0  | 260  | 1.3527          | 0.565    | 0.6484     | 3.3840 | 0.565    | 0.4761   | 0.3402 | 0.3349 |
| No log        | 21.0  | 273  | 1.1692          | 0.6      | 0.5633     | 2.9586 | 0.6      | 0.4932   | 0.3138 | 0.2299 |
| No log        | 22.0  | 286  | 1.1144          | 0.65     | 0.5253     | 2.9930 | 0.65     | 0.5281   | 0.2768 | 0.1585 |
| No log        | 23.0  | 299  | 1.0749          | 0.635    | 0.5048     | 2.8481 | 0.635    | 0.5404   | 0.2378 | 0.1642 |
| No log        | 24.0  | 312  | 1.0619          | 0.665    | 0.5018     | 2.7665 | 0.665    | 0.5653   | 0.2741 | 0.1533 |
| No log        | 25.0  | 325  | 1.0733          | 0.68     | 0.5036     | 2.6592 | 0.68     | 0.5960   | 0.2948 | 0.1633 |
| No log        | 26.0  | 338  | 1.0319          | 0.655    | 0.4930     | 2.6467 | 0.655    | 0.5786   | 0.2598 | 0.1576 |
| No log        | 27.0  | 351  | 1.0147          | 0.665    | 0.4805     | 2.6123 | 0.665    | 0.5877   | 0.2406 | 0.1405 |
| No log        | 28.0  | 364  | 0.9862          | 0.675    | 0.4734     | 2.4990 | 0.675    | 0.5876   | 0.2512 | 0.1474 |
| No log        | 29.0  | 377  | 0.9816          | 0.685    | 0.4696     | 2.5984 | 0.685    | 0.6131   | 0.2446 | 0.1428 |
| No log        | 30.0  | 390  | 0.9755          | 0.66     | 0.4698     | 2.5609 | 0.66     | 0.6009   | 0.2562 | 0.1555 |
| No log        | 31.0  | 403  | 0.9789          | 0.7      | 0.4601     | 2.6827 | 0.7      | 0.6374   | 0.2667 | 0.1271 |
| No log        | 32.0  | 416  | 0.9426          | 0.695    | 0.4501     | 2.5256 | 0.695    | 0.6315   | 0.2560 | 0.1420 |
| No log        | 33.0  | 429  | 0.9428          | 0.695    | 0.4461     | 2.6429 | 0.695    | 0.6298   | 0.2250 | 0.1243 |
| No log        | 34.0  | 442  | 0.9370          | 0.675    | 0.4455     | 2.5812 | 0.675    | 0.6061   | 0.2523 | 0.1284 |
| No log        | 35.0  | 455  | 0.9290          | 0.68     | 0.4391     | 2.3724 | 0.68     | 0.6174   | 0.2459 | 0.1361 |
| No log        | 36.0  | 468  | 0.9190          | 0.66     | 0.4393     | 2.3838 | 0.66     | 0.6140   | 0.2201 | 0.1327 |
| No log        | 37.0  | 481  | 0.9061          | 0.685    | 0.4310     | 2.3683 | 0.685    | 0.6390   | 0.2222 | 0.1196 |
| No log        | 38.0  | 494  | 0.9184          | 0.705    | 0.4387     | 2.5054 | 0.705    | 0.6444   | 0.2479 | 0.1191 |
| 1.0876        | 39.0  | 507  | 0.9185          | 0.685    | 0.4425     | 2.4429 | 0.685    | 0.6327   | 0.2450 | 0.1337 |
| 1.0876        | 40.0  | 520  | 0.9002          | 0.66     | 0.4289     | 2.4439 | 0.66     | 0.6226   | 0.2152 | 0.1302 |
| 1.0876        | 41.0  | 533  | 0.9027          | 0.68     | 0.4319     | 2.3802 | 0.68     | 0.6179   | 0.2247 | 0.1200 |
| 1.0876        | 42.0  | 546  | 0.8977          | 0.68     | 0.4321     | 2.3577 | 0.68     | 0.6195   | 0.2296 | 0.1250 |
| 1.0876        | 43.0  | 559  | 0.8861          | 0.685    | 0.4215     | 2.3150 | 0.685    | 0.6324   | 0.1870 | 0.1198 |
| 1.0876        | 44.0  | 572  | 0.8913          | 0.68     | 0.4235     | 2.4228 | 0.68     | 0.6328   | 0.2260 | 0.1193 |
| 1.0876        | 45.0  | 585  | 0.8895          | 0.675    | 0.4251     | 2.4104 | 0.675    | 0.6264   | 0.2409 | 0.1208 |
| 1.0876        | 46.0  | 598  | 0.8901          | 0.665    | 0.4223     | 2.3598 | 0.665    | 0.6146   | 0.2235 | 0.1208 |
| 1.0876        | 47.0  | 611  | 0.8809          | 0.68     | 0.4206     | 2.3528 | 0.68     | 0.6233   | 0.2306 | 0.1222 |
| 1.0876        | 48.0  | 624  | 0.8845          | 0.69     | 0.4243     | 2.4251 | 0.69     | 0.6362   | 0.2232 | 0.1219 |
| 1.0876        | 49.0  | 637  | 0.8849          | 0.675    | 0.4243     | 2.4261 | 0.675    | 0.6207   | 0.2192 | 0.1242 |
| 1.0876        | 50.0  | 650  | 0.8862          | 0.675    | 0.4233     | 2.4267 | 0.675    | 0.6266   | 0.2528 | 0.1205 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.2.0.dev20231002
- Datasets 2.7.1
- Tokenizers 0.13.3