--- license: apache-2.0 --- # SAeUron: Interpretable Concept Unlearning in Diffusion Models with Sparse Autoencoders [Paper on arXiv](https://arxiv.org/abs/2501.18052) | [GitHub repo](https://github.com/cywinski/SAeUron) The repository contains Sparse Autoencoders trained in our work for blocks `up.1.1` and `up.1.2`. After cloning our GitHub repo, you can use them as follows: ```python from SAE.sae import Sae device = "cuda" hookpoint = "unet.up_blocks.1.attentions.1" sae = Sae.load_from_hub("bcywinski/SAeUron", hookpoint=hookpoint, device=device) ``` ## 📚 Bibtex ```bibtex @article{cywinski2025saeuron, title={SAeUron: Interpretable Concept Unlearning in Diffusion Models with Sparse Autoencoders}, author={Cywi{\'n}ski, Bartosz and Deja, Kamil}, journal={arXiv preprint arXiv:2501.18052}, year={2025} } ```