File size: 45,896 Bytes
a3df1fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
---
base_model: BAAI/bge-base-en-v1.5
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3078
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: '[ q_{\text{ut}} = \frac{1}{2} \rho g B N_{\gamma} + c N_{c} +
    (p_{q} + \rho g D_{f}) N_{q} \quad \text{[SI]} \quad (36.1a) ] [ q_{\text{ut}}
    = \frac{1}{2} \gamma B N_{\gamma} + c N_{c} + (p_{q} + \gamma D_{f}) N_{q} \quad
    \text{[U.S.]} \quad (36.1b) ]


    Various researchers have made improvements on the theory supporting this equation,
    leading to somewhat different terms and sophistication in evaluating (N_0), (N_c),
    and (N_g). The approaches differ in the assumptions made of the shape of the failure
    zone beneath the footing. However, the general form of the equation is the same
    in most cases.


    Figure 36.2 and Table 36.2 can be used to evaluate the capacity factors (N_0),
    (N_c), and (N_g) in Equation 36.1. Alternatively, Table 36.3 can be used. The
    bearing capacity factors in Table 36.2 are based on Terzaghi''s 1943 studies.
    The values in Table 36.3 are based on Meyerhof''s 1955 studies and others, and
    have been widely used. Other values are also in use.


    Equation 36.1 is appropriate for a foundation in a continuous wall footing. Corrections,
    called shape factors, for various footing geometries are presented in Table 36.4
    and Table 36.5 using the parameters identified in Figure 36.3. The bearing capacity
    factors (N_c) and (N_0) are multiplied by the appropriate shape factors when they
    are used in Equation 36.1.


    Several researchers have recommended corrections to (N_0) to account for footing
    depth. (Corrections to (N_0) for footing depth have also been suggested. No corrections
    to (N_c) for footing depth have been suggested.) There is considerable variation
    in the method of calculating this correction if it is used at all. A multiplicative
    correction factor, (d_c), which is used most often, has the form:


    [ d_{c} = 1 + \frac{K D_{f}}{B} ]


    (K) is a constant for which values of 0.2 and 0.4 have been proposed. The depth
    factor correction is applied to (N_0) along with the shape factor correction in
    Equation 36.1. Once the ultimate bearing capacity is determined, it is corrected
    by the overburden, giving the net bearing capacity. This is the net pressure the
    soil can support beyond the pressure applied by the existing overburden.


    [ q_{\text{net}} = q_{\text{ult}} - \rho g D_{f} \quad \text{[SI]} \quad (36.3a)
    ] [ q_{\text{net}} = q_{\text{ut}} - \gamma D_{f} \quad \text{[U.S.]} \quad (36.3b)
    ]


    [ \begin{array}{r l}{{\mathrm{[U.S.]}}}&{{}36.3(b)}\end{array} ]


    [ q_{\text{net}} = q_{\text{ult}} - \gamma D_{f} ]


    Figure 36.2: Terzaghi Bearing Capacity Factors'
  sentences:
  - What does the net bearing capacity represent in foundation engineering?
  - Can anyone explain the difference between ductility and percent elongation?
  - How do you compute the inverse of a 3x3 matrix?
- source_sentence: 'Backwashing with filtered water pumped back through the filter
    from the bottom to the top expands the sand layer by 30-50%, which dislodges trapped
    material. Backwashing for 3-5 minutes at a rate of 8-15 gpm/ft² (5.4-10 L/s-m²)
    is a typical specification. The head loss is reduced to approximately 1 ft (0.3
    m) after washing. Experience has shown that supplementary agitation of the filter
    media is necessary to prevent "caking" and "mudballs" in almost all installations.
    Prior to backwashing, the filter material may be expanded by an air prewash volume
    of 1-8 (2-5 typical) times the sand filter volume per minute for 2-10 minutes
    (3-5 minutes typical). Alternatively, turbulence in the filter material may be
    encouraged during backwashing with an air wash or with rotating hydraulic surface
    jets.


    During backwashing, the water in the filter housing will rise at a rate of 1-3
    ft/min (0.5-1.5 cm/s). This rise should not exceed the settling velocity of the
    smallest particle that is to be retained in the filter. The wash water, which
    is collected in troughs for disposal, constitutes approximately 1-5% of the total
    processed water. The total water used is approximately 75-100 gal/ft² (3-4 kL/m²).
    The actual amount of backwash water is given by the equation:


    $$ V = A_{\text{filter}} \cdot (\text{rate of rise}) \cdot t_{\text{backwash}}
    $$


    The temperature of the water used in backwashing is important since viscosity
    changes with temperature (the effect of temperature on water density is negligible).
    Water at 40°F (4°C) is more viscous than water at 70°F (21°C). Therefore, media
    particles may be expanded to the same extent using lower upflow rates at lower
    backwash temperatures. ```markdown


    26. Other Filtration Methods


    Pressure (sand) filters for water supply treatment operate similarly to rapid
    sand filters except that incoming water is typically pressurized to 25-75 psig
    (170-520 kPa gage). Single media filter rates are typically 4-5 gpm/ft² (1.4-14
    L/s-m²), with 2-10 gpm/ft² (2.7-3.4 L/s-m² typical), while dual media filters
    run at 1.5 to 2.0 times these rates. Pressure filters are not used in large installations.


    Ultrafilters are membranes that act as sieves to retain turbidity, microorganisms,
    and large organic molecules that are THM precursors, while allowing water, salts,
    and small molecules to pass through. Ultrafiltration is effective in removing
    particles ranging in size of 0.001 to 10 µm. A pressure of 15-75 psig (100-500
    kPa) is required to drive the water through the membrane.


    Biofilm filtration (biofilm process) uses microorganisms to remove selected contaminants
    (e.g., aromatics and other hydrocarbons). The operation of biofilters is similar
    to trickling filters used in wastewater processing. Sand filter facilities are
    relatively easy to modify—sand is replaced with gravel in the 4-14 mm size range,
    application rates are decreased, and exposure to chlorine from incoming and backwash
    water is eliminated. While the maximum may never be used, a maximum backwash rate
    of 20 gpm/ft² (14 L/s-m²) should be provided for. A µm is the same as a micron.'
  sentences:
  - How do I calculate the total water used for backwashing?
  - How do I calculate flow rate if the water depth is 5 ft and channel width is 8
    ft?
  - What is the formula for estimating the percent time spent following on highways?
- source_sentence: 'Here is the LaTeX representation of the angles and the radius
    of the circle:


    \begin{align} \alpha &= \angle PQR \ \beta &= \angle QNR \ \gamma &= \angle RPN
    \ \end{align}


    \begin{align} a &= \text{radius of the circle} \ I &= \text{line segment} \ \end{align}


    The figure also includes a dashed line representing a chord and a tangent line
    from point P to the circle, with a point of tangency labeled ''T''. The tangent
    line is perpendicular to the radius of the circle at point T.


    Figure 79.5 Tangent and Chord Offset Geometry


    The short chord distance is


    [ \mathrm{NQ} = C = 2R \sin \alpha ] [ \mathrm{NP} = (2R \sin \alpha) \cos \alpha
    = C \cos \alpha ] [ \mathrm{PQ} = (2R \sin \alpha) \sin \alpha = 2R \sin^2 \alpha
    ]


    \tag{79.23} \tag{79.24} \tag{79.25} ```


    7. Curve Layout By Chord Offset


    The chord offset method is a third method for laying out horizontal curves. This
    method is also suitable for short curves. The method is named for the way in which
    the measurements are made, which is by measuring distances along the main chord
    from the instrument location at PC.


    [ \mathrm{NR} = \mathrm{chord~distance} = \mathrm{NQ}\cos\left({\frac{I}{2}} -
    \alpha\right) ]


    [ \sqrt{2} = (2R\sin\alpha)\cos\left(\frac{I}{2} - \alpha\right) = C\cos\left(\frac{I}{2}
    - \alpha\right) = (I - \alpha)^{2} ]


    [ \mathrm{RQ} = \mathrm{chord~offset} = \mathrm{NQ}~\sin\left({\frac{I}{2}} -
    \alpha\right) ]


    [ = (2R\sin\alpha)\sin\left({\frac{I}{2}} - \alpha\right) = C\sin\left({\frac{I}{2}}
    - \alpha\right) ]


    [ 79.27 ]


    8. Horizontal Curves Through Points


    Occasionally, it is necessary to design a horizontal curve to pass through a specific
    point. The following procedure can be used. (Refer to Fig. 79.6.)


    Step 1: Calculate ( \alpha ) and ( m ) from ( x ) and ( y ). (If ( x ) and ( m
    ) are known, skip this step.) [ \alpha = \arctan\left(\frac{y}{x}\right) ] [ m
    = \sqrt{x^{2} + y^{2}} ]


    Step 2: Calculate ( y ). Since ( 90^\circ + \frac{I}{2} + \alpha = 180^\circ ),
    [ \gamma = 90^\circ - \frac{I}{2} - \alpha ]


    Step 3: Calculate ( \phi ). [ \phi = 180^\circ - \arcsin\left(\frac{\sin\gamma}{\cos\left(\frac{I}{2}\right)}\right)
    ] [ = 180^\circ - \gamma - \phi ]


    Step 4: Calculate ( O ). (Refer to Eq. 79.32)'
  sentences:
  - What's the difference between horizontal and vertical parabolas in their equations?
  - What does the distance of 50 ft represent in the wave illustration?
  - What is the relationship between tangent lines and radius in circular geometry?
- source_sentence: 'Description: The image provided is not clear enough to discern
    any specific details, text, or formulas. It appears to be a blurred image with
    no distinguishable content. Therefore, I cannot extract any formulas or provide
    a description of the image content.


    Unfortunately, it is extremely difficult to prove compensatory fraud (i.e., fraud
    for which damages are available). Proving fraud requires showing beyond a reasonable
    doubt (a) a reckless or intentional misstatement of a material fact, (b) an intention
    to deceive, (c) it resulted in misleading the innocent party to contract, and
    (d) it was to the innocent party''s detriment. For example, if an engineer claims
    to have experience in designing steel buildings but actually has none, the court
    might consider the misrepresentation a fraudulent action. If, however, the engineer
    has some experience, but an insufficient amount to do an adequate job, the engineer
    probably will not be considered to have acted fraudulently.


    Torts


    A tort is a civil wrong committed by one person causing lamage to another person
    or person''s property, emoional well-being, or reputation.11 It is a breach of
    the ights of an individual to be secure in person or propxty. In order to correct
    the wrong, a civil lawsuit (tort iction or civil complaint) is brought by the
    alleged njured party (the plaintiff) against the defendant. To be a valid tort
    action (i.e., lawsuit), there must have been injury (i.e., damage). Generally,
    there will be no contract between the two parties, so the tort action annot claim
    a breach of contract. 12 Cort law is concerned with compensation for the injury,
    not punishment. Therefore, tort awards usually consist


    f general, compensatory, and special damages and arely include punitive and exemplary
    damages. (See Damages" for definitions of these damages.)


    Strict Liability In Tort


    itrict liability in tort means that the injured party wins f the injury can be
    proven. It is not necessary to prove egligence, breach of explicit or implicit
    warranty, or he existence of a contract (privity of contract). Strict ability
    in tort is most commonly encountered in prodct liability cases. A defect in a
    product, regardless of ow the defect got there, is sufficient to create strict
    ability in tort.


    lase law surrounding defective products has developed nd refined the following
    requirements for winning a trict liability in tort case. The following points
    must e proved.


    The difference between a civil tort (lausuit) and a criminal lausuit is ie alleged
    injured party. A crime is a wrong against society. A iminal lawsuit is brought
    by the state against a defendant.


    It is possible for an injury to be both a breach of contract and a tort.


    ippose an owner has an agreement with a contractor to construct a ilding, and
    the contract requires the contractor to comply with all ate and federal safety
    regulations. If the owner is subsequently jured on a stairway because there was
    no guardrail, the injury could · recoverable both as a tort and as a breach of
    contract. If a third irty unrelated to the contract was injured, however, that
    party could cover only through a tort action. · The product was defective in manufacture,
    design, labeling, and so on.


    The product was defective when used.


    The defect rendered the product unreasonably dangerous.


    The defect caused the injury. .


    The specific use of the product that caused the damage was reasonably foreseeable.


    Manufacturing And Design Liability'
  sentences:
  - What factors influence the instantaneous center of rotation in welded structures?
  - How do you establish if fraud has occurred in a contract?
  - How do you calculate the probability of multiple events happening?
- source_sentence: '9. Area


    Equation 9.35 calculates the area, ( A ), bounded by ( x = a ), ( x = b ), ( f_1(x)
    ) above, and ( f_2(x) ) below. (Note: ( f_2(x) = 0 ) if the area is bounded by
    the x-axis.) This is illustrated in Fig. 9.1. [ A = \int_{a}^{b} \left( f_{1}(x)
    - f_{2}(x) \right) \, dx \qquad \qquad (9.35) ] Figure 9.1 Area Between Two Curves


    Description: The image shows a graph with two curves labeled f1(x) and f2(x).
    The graph is plotted on a Cartesian coordinate system with an x-axis and a y-axis.
    There are two vertical dashed lines intersecting the x-axis at points labeled
    ''a'' and ''b''. The curve f1(x) is above the line y = 0 and the curve f2(x) is
    below the line y = 0. The area between the two curves from x = a to x = b is shaded,
    indicating a region of interest or calculation.


    The LaTeX representation of the curves is not provided in the image, so I cannot
    write them in LaTeX form. However, if the curves were described by functions,
    they could be represented as follows:


    f1(x) could be represented as ( f_1(x) = ax^2 + bx + c ) for some constants a,
    b, and c.


    f2(x) could be represented as ( f_2(x) = -ax^2 - bx - c ) for some constants a,
    b, and c.


    The area between the curves from x = a to x = b could be calculated using the
    integral of the difference between the two functions over the interval [a, b].


    Description: The image provided is not clear enough to describe in detail or to
    extract any formulas. The text is not legible, and no other discernible features
    can be identified.


    Find the area between the x-axis and the parabola ( y = x^2 ) in the interval
    ([0, 4]).


    Description: The image shows a graph with a curve that represents a function y
    = x^2. There is a vertical dashed line at x = 4, indicating a point of interest
    or a specific value on the x-axis. The graph is plotted on a Cartesian coordinate
    system with the x-axis labeled ''x'' and the y-axis labeled ''y''. The curve is
    a parabola that opens upwards, showing that as x increases, y increases at an
    increasing rate. The point where x = 4 is marked on the x-axis, and the corresponding
    y-value on the curve is not explicitly shown but can be inferred from the equation
    y = x^2.


    Solution: Referring to Eq. 9.35, [ f_{1}(x) = x^{2} \quad \text{and} \quad f_{2}(x)
    = 0 ] Thus, [ A = \int_{a}^{b} \left( f_1(x) - f_2(x) \right) dx = \int_{0}^{4}
    x^2 \, dx = \left[ \frac{x^3}{3} \right]_{0}^{4} = \frac{64}{3} ] ...


    10. Arc Length'
  sentences:
  - Can you show me how to find the area using the integral of the difference of two
    functions?
  - Can you explain how to calculate the force BC using trigonometric components?
  - What is the minimum requirement for steel area in slab reinforcement according
    to ACI guidelines?
model-index:
- name: deep learning project
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.2543859649122807
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5789473684210527
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.7017543859649122
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7982456140350878
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2543859649122807
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19298245614035087
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.14035087719298245
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07982456140350876
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2543859649122807
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5789473684210527
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.7017543859649122
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7982456140350878
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5289463979794752
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4422630650700826
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.45071327302764325
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.2631578947368421
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5760233918128655
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.695906432748538
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.783625730994152
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2631578947368421
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.19200779727095513
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.13918128654970757
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0783625730994152
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2631578947368421
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5760233918128655
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.695906432748538
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.783625730994152
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.525405284677311
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4422096908939014
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.45077185641932777
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.260233918128655
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5526315789473685
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6754385964912281
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7573099415204678
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.260233918128655
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.18421052631578946
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1350877192982456
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07573099415204677
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.260233918128655
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5526315789473685
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6754385964912281
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7573099415204678
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.5082788808907895
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.4281189083820665
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4372871346521922
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.2134502923976608
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.5116959064327485
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.6403508771929824
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7368421052631579
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2134502923976608
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1705653021442495
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.12807017543859647
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07368421052631578
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2134502923976608
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.5116959064327485
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.6403508771929824
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7368421052631579
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4726924534205871
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3880070546737214
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.39701781193586744
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.1871345029239766
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.47076023391812866
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5789473684210527
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.6695906432748538
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.1871345029239766
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.15692007797270952
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11578947368421051
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.06695906432748537
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.1871345029239766
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.47076023391812866
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5789473684210527
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.6695906432748538
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.42447214920635656
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3461802654785111
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3562882551304709
      name: Cosine Map@100
---

# deep learning project

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - json
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bbmb/deep-learning-for-embedding-model-ssilwal-qpham6")
# Run inference
sentences = [
    "9. Area\n\nEquation 9.35 calculates the area, ( A ), bounded by ( x = a ), ( x = b ), ( f_1(x) ) above, and ( f_2(x) ) below. (Note: ( f_2(x) = 0 ) if the area is bounded by the x-axis.) This is illustrated in Fig. 9.1. [ A = \\int_{a}^{b} \\left( f_{1}(x) - f_{2}(x) \\right) \\, dx \\qquad \\qquad (9.35) ] Figure 9.1 Area Between Two Curves\n\nDescription: The image shows a graph with two curves labeled f1(x) and f2(x). The graph is plotted on a Cartesian coordinate system with an x-axis and a y-axis. There are two vertical dashed lines intersecting the x-axis at points labeled 'a' and 'b'. The curve f1(x) is above the line y = 0 and the curve f2(x) is below the line y = 0. The area between the two curves from x = a to x = b is shaded, indicating a region of interest or calculation.\n\nThe LaTeX representation of the curves is not provided in the image, so I cannot write them in LaTeX form. However, if the curves were described by functions, they could be represented as follows:\n\nf1(x) could be represented as ( f_1(x) = ax^2 + bx + c ) for some constants a, b, and c.\n\nf2(x) could be represented as ( f_2(x) = -ax^2 - bx - c ) for some constants a, b, and c.\n\nThe area between the curves from x = a to x = b could be calculated using the integral of the difference between the two functions over the interval [a, b].\n\nDescription: The image provided is not clear enough to describe in detail or to extract any formulas. The text is not legible, and no other discernible features can be identified.\n\nFind the area between the x-axis and the parabola ( y = x^2 ) in the interval ([0, 4]).\n\nDescription: The image shows a graph with a curve that represents a function y = x^2. There is a vertical dashed line at x = 4, indicating a point of interest or a specific value on the x-axis. The graph is plotted on a Cartesian coordinate system with the x-axis labeled 'x' and the y-axis labeled 'y'. The curve is a parabola that opens upwards, showing that as x increases, y increases at an increasing rate. The point where x = 4 is marked on the x-axis, and the corresponding y-value on the curve is not explicitly shown but can be inferred from the equation y = x^2.\n\nSolution: Referring to Eq. 9.35, [ f_{1}(x) = x^{2} \\quad \\text{and} \\quad f_{2}(x) = 0 ] Thus, [ A = \\int_{a}^{b} \\left( f_1(x) - f_2(x) \\right) dx = \\int_{0}^{4} x^2 \\, dx = \\left[ \\frac{x^3}{3} \\right]_{0}^{4} = \\frac{64}{3} ] ...\n\n10. Arc Length",
    'Can you show me how to find the area using the integral of the difference of two functions?',
    'What is the minimum requirement for steel area in slab reinforcement according to ACI guidelines?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_768    | dim_512    | dim_256    | dim_128    | dim_64     |
|:--------------------|:-----------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.2544     | 0.2632     | 0.2602     | 0.2135     | 0.1871     |
| cosine_accuracy@3   | 0.5789     | 0.576      | 0.5526     | 0.5117     | 0.4708     |
| cosine_accuracy@5   | 0.7018     | 0.6959     | 0.6754     | 0.6404     | 0.5789     |
| cosine_accuracy@10  | 0.7982     | 0.7836     | 0.7573     | 0.7368     | 0.6696     |
| cosine_precision@1  | 0.2544     | 0.2632     | 0.2602     | 0.2135     | 0.1871     |
| cosine_precision@3  | 0.193      | 0.192      | 0.1842     | 0.1706     | 0.1569     |
| cosine_precision@5  | 0.1404     | 0.1392     | 0.1351     | 0.1281     | 0.1158     |
| cosine_precision@10 | 0.0798     | 0.0784     | 0.0757     | 0.0737     | 0.067      |
| cosine_recall@1     | 0.2544     | 0.2632     | 0.2602     | 0.2135     | 0.1871     |
| cosine_recall@3     | 0.5789     | 0.576      | 0.5526     | 0.5117     | 0.4708     |
| cosine_recall@5     | 0.7018     | 0.6959     | 0.6754     | 0.6404     | 0.5789     |
| cosine_recall@10    | 0.7982     | 0.7836     | 0.7573     | 0.7368     | 0.6696     |
| **cosine_ndcg@10**  | **0.5289** | **0.5254** | **0.5083** | **0.4727** | **0.4245** |
| cosine_mrr@10       | 0.4423     | 0.4422     | 0.4281     | 0.388      | 0.3462     |
| cosine_map@100      | 0.4507     | 0.4508     | 0.4373     | 0.397      | 0.3563     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### json

* Dataset: json
* Size: 3,078 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                             | anchor                                                                            |
  |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                               | string                                                                            |
  | details | <ul><li>min: 117 tokens</li><li>mean: 508.1 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 15.93 tokens</li><li>max: 28 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | anchor                                                                                        |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------|
  | <code>The PHF is used to convert hourly volumes to flow rates and represents the hourly variation in traffic flow. If the demand volume is measured in 15 min increments, it is unnecessary to use the PHF to convert to flow rates.<br><br>Therefore, since two-lane highway analysis is based on demand flow rates for a peak 15 min period within the analysis hour (usually the peak hour), the PHF in Equation 73.22 and Equation 73.23 is given a value of 1.00.<br><br>The average travel speed in the analysis direction, ( ATS_d ), is estimated from the FFS, the demand flow rate, the opposing flow rate, and the adjustment factor for the percentage of no-passing zones in the analysis direction, ( f_{np} ), as given in HCM Exh. 15-15. Equation 73.24 only applies to Class I and Class III two-lane highways.<br><br>[ \mathrm{ATS}{d} = \mathrm{FFS} - 0.0076(v{d,s} + v_{o,s}) - f_{\mathrm{np},s} \quad (73.24) ]<br><br>If the PTSF methodology is used, the formula for the demand flow rate, ( v_{i, \text{ATS}} ), is the same, although di...</code> | <code>What is the formula for estimating the percent time spent following on highways?</code> |
  | <code>However, if the initial point on the limb is close to the critical point (i.e., the nose of the curve), then a small change in the specific energy (such as might be caused by a small variation in the channel floor) will cause a large change in depth. That is why severe turbulence commonly occurs near points of critical flow. Given that ( 4 \, \text{ft/sec} ) (or ( 1.2 \, \text{m/s} )) of water flows in a ( 7 \, \text{ft} ) (or ( 2.1 \, \text{m} )) wide, ( 6 \, \text{ft} ) (or ( 1.8 \, \text{m} )) deep open channel, the flow encounters a ( 1.0 \, \text{ft} ) (or ( 0.3 \, \text{m} )) step in the channel bottom. What is the depth of flow above the step? Actually, specific energy curves are typically plotted for flow per unit width, ( q = \frac{Q}{w} ). If that is the case, a jump from one limb to the other could take place if the width were allowed to change as well as the depth. A rise in the channel bottom does not always produce a drop in the water surface. Only if the flow is initiall...</code>                         | <code>What happens to the water depth when it encounters a step in a channel?</code>          |
  | <code>The shear strength, ( S ) or ( S_{ys} ), of a material is the maximum shear stress that the material can support without yielding in shear. (The ultimate shear strength, ( S_{us} ), is rarely encountered.) For ductile materials, maximum shear stress theory predicts the shear strength as one-half of the tensile yield strength. A more accurate relationship is derived from the distortion energy theory (also known as von Mises theory).<br><br>Figure 43.16: Uniform Bar in Torsion<br><br>Description: The image shows a diagram of a mechanical system with a cylindrical object, a rod, and a spring. There are two forces acting on the system: one is the weight of the rod, labeled 'L', acting downwards, and the other is the spring force, labeled 'T', acting upwards. The rod is shown to be in equilibrium, with the spring force balancing the weight of the rod. The distance from the pivot point to the center of mass of the rod is labeled 'r'. There is also a variable 'y' indicating the vertical displacement of t...</code>             | <code>Can you explain what maximum shear stress theory is?</code>                             |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step   | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 0.9897     | 6      | -             | 0.5417                 | 0.5428                 | 0.5145                 | 0.4630                 | 0.3945                |
| 1.6495     | 10     | 3.7867        | -                      | -                      | -                      | -                      | -                     |
| 1.9794     | 12     | -             | 0.5269                 | 0.5206                 | 0.4992                 | 0.4751                 | 0.4082                |
| **2.9691** | **18** | **-**         | **0.5298**             | **0.5238**             | **0.5107**             | **0.4761**             | **0.4268**            |
| 3.2990     | 20     | 1.9199        | -                      | -                      | -                      | -                      | -                     |
| 3.9588     | 24     | -             | 0.5289                 | 0.5254                 | 0.5083                 | 0.4727                 | 0.4245                |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->