Update README.md
Browse files
README.md
CHANGED
|
@@ -43,7 +43,7 @@ The model understands the unique challenges, medical realities, and daily life c
|
|
| 43 |
- **Base Model**: teknium/OpenHermes-2.5-Mistral-7B
|
| 44 |
- **Training Method**: QLoRA (4-bit quantization with LoRA adapters)
|
| 45 |
- **Training Data**: 119,117 total entries (35,779 domain text + 83,337 instruction pairs)
|
| 46 |
-
- **Hardware**: RTX 4070 Super (
|
| 47 |
- **Training Time**: ~20 hours total (Phase 1 + Phase 2)
|
| 48 |
|
| 49 |
## Usage
|
|
@@ -355,7 +355,7 @@ Training data underwent extensive preprocessing:
|
|
| 355 |
#### Speeds, Sizes, Times
|
| 356 |
|
| 357 |
- **Total training time:** ~20 hours (8h Phase 1 + 12h Phase 2)
|
| 358 |
-
- **Hardware:** RTX 4070 Super (
|
| 359 |
- **Final model size:** 30MB (LoRA adapter only)
|
| 360 |
- **Base model size:** 7B parameters (not included in adapter)
|
| 361 |
- **Training throughput:** ~3.5 samples/second average
|
|
@@ -415,7 +415,7 @@ Evaluation considered multiple factors:
|
|
| 415 |
|
| 416 |
Training carbon emissions estimated using energy consumption data:
|
| 417 |
|
| 418 |
-
- **Hardware Type:** RTX 4070 Super (
|
| 419 |
- **Hours used:** ~20 hours total training time
|
| 420 |
- **Cloud Provider:** Local training (personal hardware)
|
| 421 |
- **Compute Region:** North America
|
|
@@ -437,7 +437,7 @@ The use of QLoRA significantly reduced training time and energy consumption comp
|
|
| 437 |
|
| 438 |
#### Hardware
|
| 439 |
|
| 440 |
-
- **GPU:** NVIDIA RTX 4070 Super (
|
| 441 |
- **CPU:** Modern multi-core processor
|
| 442 |
- **RAM:** 32GB system memory
|
| 443 |
- **Storage:** NVMe SSD for fast data loading
|
|
|
|
| 43 |
- **Base Model**: teknium/OpenHermes-2.5-Mistral-7B
|
| 44 |
- **Training Method**: QLoRA (4-bit quantization with LoRA adapters)
|
| 45 |
- **Training Data**: 119,117 total entries (35,779 domain text + 83,337 instruction pairs)
|
| 46 |
+
- **Hardware**: RTX 4070 Super (12GB VRAM)
|
| 47 |
- **Training Time**: ~20 hours total (Phase 1 + Phase 2)
|
| 48 |
|
| 49 |
## Usage
|
|
|
|
| 355 |
#### Speeds, Sizes, Times
|
| 356 |
|
| 357 |
- **Total training time:** ~20 hours (8h Phase 1 + 12h Phase 2)
|
| 358 |
+
- **Hardware:** RTX 4070 Super (12GB VRAM)
|
| 359 |
- **Final model size:** 30MB (LoRA adapter only)
|
| 360 |
- **Base model size:** 7B parameters (not included in adapter)
|
| 361 |
- **Training throughput:** ~3.5 samples/second average
|
|
|
|
| 415 |
|
| 416 |
Training carbon emissions estimated using energy consumption data:
|
| 417 |
|
| 418 |
+
- **Hardware Type:** RTX 4070 Super (12GB VRAM)
|
| 419 |
- **Hours used:** ~20 hours total training time
|
| 420 |
- **Cloud Provider:** Local training (personal hardware)
|
| 421 |
- **Compute Region:** North America
|
|
|
|
| 437 |
|
| 438 |
#### Hardware
|
| 439 |
|
| 440 |
+
- **GPU:** NVIDIA RTX 4070 Super (12GB VRAM)
|
| 441 |
- **CPU:** Modern multi-core processor
|
| 442 |
- **RAM:** 32GB system memory
|
| 443 |
- **Storage:** NVMe SSD for fast data loading
|