Upload merged SCI Assistant model (OpenHermes-2.5-Mistral-7B + SCI LoRA)
Browse files- README.md +38 -353
- config.json +26 -0
- generation_config.json +6 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- special_tokens_map.json +0 -7
- tokenizer_config.json +1 -1
README.md
CHANGED
|
@@ -1,380 +1,65 @@
|
|
| 1 |
-
|
| 2 |
-
base_model: teknium/OpenHermes-2.5-Mistral-7B
|
| 3 |
-
library_name: peft
|
| 4 |
-
pipeline_tag: text-generation
|
| 5 |
-
tags:
|
| 6 |
-
- base_model:adapter:teknium/OpenHermes-2.5-Mistral-7B
|
| 7 |
-
- lora
|
| 8 |
-
- medical
|
| 9 |
-
- spinal-cord-injury
|
| 10 |
-
- healthcare
|
| 11 |
-
- assistant
|
| 12 |
-
---
|
| 13 |
|
| 14 |
-
|
| 15 |
-
A specialized AI assistant fine-tuned specifically for people with spinal cord injuries (SCI). This model is based on OpenHermes-2.5-Mistral-7B and has been trained using a two-phase approach with LoRA (Low-Rank Adaptation) to provide contextually appropriate and medically-informed responses for the SCI community.
|
| 16 |
|
| 17 |
## Model Description
|
| 18 |
|
| 19 |
-
This model
|
| 20 |
-
1. **Phase 1**: Domain pretraining on SCI-related medical texts and resources
|
| 21 |
-
2. **Phase 2**: Instruction tuning on conversational SCI-focused Q&A pairs
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
## Training
|
| 26 |
|
| 27 |
-
|
| 28 |
-
-
|
| 29 |
-
-
|
| 30 |
-
-
|
| 31 |
-
-
|
| 32 |
|
| 33 |
## Usage
|
| 34 |
|
| 35 |
```python
|
| 36 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 37 |
-
from peft import PeftModel
|
| 38 |
-
import torch
|
| 39 |
-
|
| 40 |
-
# Load model
|
| 41 |
-
bnb_config = BitsAndBytesConfig(
|
| 42 |
-
load_in_4bit=True,
|
| 43 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 44 |
-
)
|
| 45 |
-
|
| 46 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
-
"teknium/OpenHermes-2.5-Mistral-7B",
|
| 48 |
-
quantization_config=bnb_config,
|
| 49 |
-
device_map="auto"
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
model = PeftModel.from_pretrained(base_model, "basiphobe/sci-assistant")
|
| 53 |
-
tokenizer = AutoTokenizer.from_pretrained("basiphobe/sci-assistant")
|
| 54 |
-
|
| 55 |
-
# Format prompt with SCI context
|
| 56 |
-
system_context = "You are a specialized medical assistant for people with spinal cord injuries. Your responses should always consider the unique needs, challenges, and medical realities of individuals living with SCI."
|
| 57 |
|
| 58 |
-
|
|
|
|
| 59 |
|
| 60 |
-
#
|
|
|
|
| 61 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 62 |
-
outputs = model.generate(**inputs,
|
| 63 |
-
response = tokenizer.decode(outputs[0]
|
| 64 |
```
|
| 65 |
|
| 66 |
## Intended Use
|
| 67 |
|
| 68 |
-
|
| 69 |
-
-
|
| 70 |
-
-
|
| 71 |
-
- Offer practical advice for common SCI challenges
|
| 72 |
-
- Support the SCI community with contextually appropriate responses
|
| 73 |
|
| 74 |
## Limitations
|
| 75 |
|
| 76 |
-
- This model
|
| 77 |
-
- Always consult
|
| 78 |
-
-
|
| 79 |
-
-
|
| 80 |
-
|
| 81 |
-
## Direct Use
|
| 82 |
-
|
| 83 |
-
This model can be used directly for:
|
| 84 |
-
- Educational purposes about spinal cord injuries
|
| 85 |
-
- Providing general information and support to the SCI community
|
| 86 |
-
- Research into specialized medical AI assistants
|
| 87 |
-
- Personal use by individuals seeking SCI-related information
|
| 88 |
-
|
| 89 |
-
The model is designed to provide contextually appropriate responses that consider the unique challenges and medical realities of spinal cord injuries.
|
| 90 |
-
|
| 91 |
-
### Downstream Use
|
| 92 |
-
|
| 93 |
-
This model can be fine-tuned further for:
|
| 94 |
-
- Integration into healthcare applications
|
| 95 |
-
- Specialized medical chatbots for rehabilitation centers
|
| 96 |
-
- Educational platforms for SCI awareness and training
|
| 97 |
-
- Research applications in medical AI
|
| 98 |
-
- Custom applications for SCI support organizations
|
| 99 |
-
|
| 100 |
-
When used in downstream applications, implementers should:
|
| 101 |
-
- Maintain the medical disclaimer requirements
|
| 102 |
-
- Ensure proper supervision by medical professionals
|
| 103 |
-
- Implement appropriate safety measures and content filtering
|
| 104 |
-
- Validate outputs for medical accuracy in their specific use case
|
| 105 |
-
|
| 106 |
-
### Out-of-Scope Use
|
| 107 |
-
|
| 108 |
-
This model should NOT be used for:
|
| 109 |
-
- **Medical diagnosis or treatment decisions** - Always consult healthcare professionals
|
| 110 |
-
- **Emergency medical situations** - Seek immediate professional medical help
|
| 111 |
-
- **Legal or financial advice** related to SCI cases
|
| 112 |
-
- **Replacement for professional medical consultation**
|
| 113 |
-
- **Clinical decision-making** without physician oversight
|
| 114 |
-
- **Applications targeting vulnerable populations** without proper safeguards
|
| 115 |
-
- **Commercial medical applications** without appropriate medical validation and oversight
|
| 116 |
-
|
| 117 |
-
## Bias, Risks, and Limitations
|
| 118 |
-
|
| 119 |
-
### Medical Limitations
|
| 120 |
-
- **Not a substitute for medical professionals**: All medical advice should be verified with qualified healthcare providers
|
| 121 |
-
- **Training data limitations**: May not include the most recent medical research or treatments
|
| 122 |
-
- **Individual variation**: SCI affects individuals differently; responses may not apply to all cases
|
| 123 |
-
- **Geographic bias**: Training data may be biased toward certain healthcare systems or regions
|
| 124 |
-
|
| 125 |
-
### Technical Limitations
|
| 126 |
-
- **Hallucination risk**: Like all language models, may generate plausible-sounding but incorrect information
|
| 127 |
-
- **Context limitations**: Limited by input context window and may not retain information across long conversations
|
| 128 |
-
- **Language limitations**: Primarily trained on English content
|
| 129 |
-
- **Update lag**: Cannot access real-time medical research or current events
|
| 130 |
-
|
| 131 |
-
### Bias Considerations
|
| 132 |
-
- **Training data bias**: Reflects biases present in source medical literature and online content
|
| 133 |
-
- **Demographic representation**: May not equally represent all demographics within the SCI community
|
| 134 |
-
- **Healthcare access bias**: May reflect biases toward certain types of healthcare systems
|
| 135 |
-
- **Severity bias**: May be more informed about certain types or severities of SCI
|
| 136 |
-
|
| 137 |
-
### Risk Mitigation
|
| 138 |
-
- Always include medical disclaimers when using this model
|
| 139 |
-
- Implement content filtering for harmful or dangerous advice
|
| 140 |
-
- Regular evaluation by medical professionals is recommended
|
| 141 |
-
- Monitor outputs for accuracy and appropriateness
|
| 142 |
-
|
| 143 |
-
### Recommendations
|
| 144 |
-
|
| 145 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 146 |
-
|
| 147 |
-
### Recommendations
|
| 148 |
-
|
| 149 |
-
Users should be aware of the following recommendations:
|
| 150 |
-
|
| 151 |
-
**For Direct Users:**
|
| 152 |
-
- Always verify medical information with qualified healthcare professionals
|
| 153 |
-
- Use responses as educational/informational starting points, not definitive advice
|
| 154 |
-
- Be aware that individual SCI experiences vary significantly
|
| 155 |
-
- Seek immediate professional help for urgent medical concerns
|
| 156 |
-
|
| 157 |
-
**For Developers/Implementers:**
|
| 158 |
-
- Implement clear medical disclaimers in any application using this model
|
| 159 |
-
- Provide easy access to professional medical resources alongside model responses
|
| 160 |
-
- Consider implementing content filtering for potentially harmful advice
|
| 161 |
-
- Regular review by medical professionals is strongly recommended
|
| 162 |
-
- Ensure compliance with relevant healthcare regulations (HIPAA, etc.)
|
| 163 |
-
|
| 164 |
-
**For Healthcare Organizations:**
|
| 165 |
-
- Professional medical oversight is essential when implementing in clinical settings
|
| 166 |
-
- Regular validation of model outputs against current medical standards
|
| 167 |
-
- Integration should complement, not replace, professional medical consultation
|
| 168 |
-
- Staff training on AI limitations and appropriate use cases
|
| 169 |
-
|
| 170 |
-
## Training Details
|
| 171 |
-
|
| 172 |
-
### Training Data
|
| 173 |
-
|
| 174 |
-
The training dataset consisted of 119,117 carefully curated entries focused on spinal cord injury information:
|
| 175 |
-
|
| 176 |
-
**Domain Pretraining Data (35,779 entries):**
|
| 177 |
-
- Medical literature and research papers on SCI
|
| 178 |
-
- Educational materials from reputable SCI organizations
|
| 179 |
-
- Clinical guidelines and treatment protocols
|
| 180 |
-
- Rehabilitation and therapy documentation
|
| 181 |
-
- Patient education resources
|
| 182 |
-
|
| 183 |
-
**Instruction Tuning Data (83,337 entries):**
|
| 184 |
-
- SCI-focused question-answer pairs
|
| 185 |
-
- Conversational examples with appropriate medical context
|
| 186 |
-
- Real-world scenarios and practical advice situations
|
| 187 |
-
- Educational Q&A formatted for instruction following
|
| 188 |
-
|
| 189 |
-
All training data was filtered and curated to ensure:
|
| 190 |
-
- Sources from reputable medical organizations and healthcare professionals
|
| 191 |
-
- Content originally created or reviewed by medical professionals in the SCI field
|
| 192 |
-
- Appropriate tone and sensitivity for SCI community
|
| 193 |
-
- Removal of potentially harmful or dangerous advice
|
| 194 |
-
- Proper medical disclaimers and context
|
| 195 |
-
|
| 196 |
-
**Note**: While the source materials were created by medical professionals, this model itself has not undergone independent medical validation.
|
| 197 |
-
|
| 198 |
-
### Training Procedure
|
| 199 |
-
|
| 200 |
-
The model was trained using a two-phase approach with QLoRA (Quantized Low-Rank Adaptation):
|
| 201 |
-
|
| 202 |
-
**Phase 1 - Domain Pretraining:**
|
| 203 |
-
- Focus: Medical terminology and SCI-specific knowledge
|
| 204 |
-
- Duration: 2 epochs (~8 hours)
|
| 205 |
-
- Data: 35,779 domain text entries
|
| 206 |
-
- Objective: Adapt base model to SCI medical domain
|
| 207 |
-
|
| 208 |
-
**Phase 2 - Instruction Tuning:**
|
| 209 |
-
- Focus: Conversational abilities and response formatting
|
| 210 |
-
- Duration: 2 epochs (~12 hours)
|
| 211 |
-
- Data: 83,337 instruction-response pairs
|
| 212 |
-
- Objective: Teach appropriate response patterns and tone
|
| 213 |
-
|
| 214 |
-
#### Preprocessing
|
| 215 |
-
|
| 216 |
-
Training data underwent extensive preprocessing:
|
| 217 |
-
- Content sourced from materials created by healthcare professionals
|
| 218 |
-
- Sensitive content filtering and safety checks
|
| 219 |
-
- Standardized formatting for instruction-following
|
| 220 |
-
- Quality filtering to remove low-quality or inappropriate content
|
| 221 |
-
- Tokenization optimization for efficient training
|
| 222 |
-
|
| 223 |
-
#### Training Hyperparameters
|
| 224 |
-
|
| 225 |
-
- **Training regime:** 4-bit quantization with LoRA adapters (QLoRA)
|
| 226 |
-
- **Learning rate:** 2e-4 with cosine scheduling
|
| 227 |
-
- **LoRA rank:** 16
|
| 228 |
-
- **LoRA alpha:** 32
|
| 229 |
-
- **LoRA dropout:** 0.05
|
| 230 |
-
- **Target modules:** q_proj, v_proj
|
| 231 |
-
- **Batch size:** 4 with gradient accumulation
|
| 232 |
-
- **Max sequence length:** 512 tokens
|
| 233 |
-
- **Optimizer:** AdamW with weight decay
|
| 234 |
|
| 235 |
-
|
| 236 |
|
| 237 |
-
- **
|
| 238 |
-
- **
|
| 239 |
-
- **
|
| 240 |
-
- **
|
| 241 |
-
- **Training throughput:** ~3.5 samples/second average
|
| 242 |
-
- **Memory usage:** 6-7GB VRAM during training
|
| 243 |
-
|
| 244 |
-
## Evaluation
|
| 245 |
-
|
| 246 |
-
### Testing Data, Factors & Metrics
|
| 247 |
-
|
| 248 |
-
#### Testing Data
|
| 249 |
-
|
| 250 |
-
The model was evaluated using:
|
| 251 |
-
- Held-out test set of SCI-related questions (500 samples)
|
| 252 |
-
- Manual review of response quality and appropriateness
|
| 253 |
-
- Comparative analysis against general-purpose models on SCI topics
|
| 254 |
-
- Assessment of domain-specific knowledge retention
|
| 255 |
-
|
| 256 |
-
**Note**: Evaluation was conducted by the model developer, not independent medical professionals.
|
| 257 |
-
|
| 258 |
-
#### Factors
|
| 259 |
-
|
| 260 |
-
Evaluation considered multiple factors:
|
| 261 |
-
- **Medical accuracy**: Correctness of SCI-related information
|
| 262 |
-
- **Appropriateness**: Sensitivity and tone for SCI community
|
| 263 |
-
- **Contextual relevance**: Understanding of SCI-specific challenges
|
| 264 |
-
- **Safety**: Avoidance of harmful or dangerous advice
|
| 265 |
-
- **Completeness**: Comprehensive responses to complex questions
|
| 266 |
-
|
| 267 |
-
#### Metrics
|
| 268 |
-
|
| 269 |
-
- **Medical accuracy score**: Based on consistency with source medical literature (not independently validated)
|
| 270 |
-
- **Appropriateness rating**: Developer assessment of tone and sensitivity (4.2/5.0 subjective rating)
|
| 271 |
-
- **Response relevance**: SCI-specific context understanding (82% relevance score)
|
| 272 |
-
- **Safety compliance**: No obviously harmful medical advice detected in test samples
|
| 273 |
-
- **Response quality**: Perplexity improvements over base model for SCI domain
|
| 274 |
-
|
| 275 |
-
### Results
|
| 276 |
-
|
| 277 |
-
**Quantitative Results:**
|
| 278 |
-
- 40% improvement in SCI domain perplexity over base model
|
| 279 |
-
- Responses demonstrate consistency with source medical literature
|
| 280 |
-
- 95% safety compliance (no obviously harmful medical advice detected)
|
| 281 |
-
- 82% average relevance score for SCI-specific contexts
|
| 282 |
-
|
| 283 |
-
**Qualitative Results:**
|
| 284 |
-
- Responses demonstrate clear understanding of SCI terminology and concepts
|
| 285 |
-
- Appropriate tone and sensitivity for disability community
|
| 286 |
-
- Consistent inclusion of medical disclaimers
|
| 287 |
-
- Good balance between being helpful and cautious about medical advice
|
| 288 |
-
|
| 289 |
-
**Limitations of Evaluation:**
|
| 290 |
-
- Evaluation conducted by model developer, not independent medical experts
|
| 291 |
-
- No formal clinical validation or testing with SCI patients
|
| 292 |
-
- Results based on consistency with training sources, not independent medical verification
|
| 293 |
-
|
| 294 |
-
## Environmental Impact
|
| 295 |
-
|
| 296 |
-
Training carbon emissions estimated using energy consumption data:
|
| 297 |
-
|
| 298 |
-
- **Hardware Type:** RTX 4070 Super (8GB VRAM)
|
| 299 |
-
- **Hours used:** ~20 hours total training time
|
| 300 |
-
- **Cloud Provider:** Local training (personal hardware)
|
| 301 |
-
- **Compute Region:** North America
|
| 302 |
-
- **Carbon Emitted:** Approximately 2.1 kg CO2eq (estimated based on local energy grid)
|
| 303 |
-
|
| 304 |
-
The use of QLoRA significantly reduced training time and energy consumption compared to full fine-tuning methods, making this a relatively efficient training approach.
|
| 305 |
-
|
| 306 |
-
## Technical Specifications
|
| 307 |
-
|
| 308 |
-
### Model Architecture and Objective
|
| 309 |
-
|
| 310 |
-
- **Base Architecture:** Mistral 7B transformer model
|
| 311 |
-
- **Adaptation Method:** QLoRA (Quantized Low-Rank Adaptation)
|
| 312 |
-
- **Objective:** Causal language modeling with SCI domain specialization
|
| 313 |
-
- **Quantization:** 4-bit precision for memory efficiency
|
| 314 |
-
- **LoRA Configuration:** Rank-16 adapters on attention projection layers
|
| 315 |
-
|
| 316 |
-
### Compute Infrastructure
|
| 317 |
-
|
| 318 |
-
#### Hardware
|
| 319 |
-
|
| 320 |
-
- **GPU:** NVIDIA RTX 4070 Super (8GB VRAM)
|
| 321 |
-
- **CPU:** Modern multi-core processor
|
| 322 |
-
- **RAM:** 32GB system memory
|
| 323 |
-
- **Storage:** NVMe SSD for fast data loading
|
| 324 |
-
|
| 325 |
-
#### Software
|
| 326 |
-
|
| 327 |
-
- **Framework:** Transformers 4.36+, PEFT 0.16.0
|
| 328 |
-
- **Training:** QLoRA with bitsandbytes quantization
|
| 329 |
-
- **Environment:** Python 3.10+, PyTorch 2.0+, CUDA 12.1
|
| 330 |
-
|
| 331 |
-
## Citation
|
| 332 |
-
|
| 333 |
-
If you use this model in your research or applications, please cite:
|
| 334 |
-
|
| 335 |
-
**BibTeX:**
|
| 336 |
-
```bibtex
|
| 337 |
-
@misc{sci_assistant_2025,
|
| 338 |
-
title={SCI Assistant: A Specialized AI Assistant for Spinal Cord Injury Support},
|
| 339 |
-
author={basiphobe},
|
| 340 |
-
year={2025},
|
| 341 |
-
howpublished={Hugging Face Model Repository},
|
| 342 |
-
url={https://huggingface.co/basiphobe/sci-assistant}
|
| 343 |
-
}
|
| 344 |
-
```
|
| 345 |
-
|
| 346 |
-
**APA:**
|
| 347 |
-
basiphobe. (2025). *SCI Assistant: A Specialized AI Assistant for Spinal Cord Injury Support*. Hugging Face. https://huggingface.co/basiphobe/sci-assistant
|
| 348 |
-
|
| 349 |
-
## Glossary
|
| 350 |
-
|
| 351 |
-
**SCI**: Spinal Cord Injury - damage to the spinal cord that results in temporary or permanent changes in function
|
| 352 |
-
|
| 353 |
-
**QLoRA**: Quantized Low-Rank Adaptation - an efficient fine-tuning method that reduces memory requirements
|
| 354 |
-
|
| 355 |
-
**Domain Pretraining**: Training phase focused on learning domain-specific terminology and knowledge
|
| 356 |
-
|
| 357 |
-
**Instruction Tuning**: Training phase focused on learning conversational patterns and response formatting
|
| 358 |
-
|
| 359 |
-
**Perplexity**: A metric measuring how well a language model predicts text (lower is better)
|
| 360 |
-
|
| 361 |
-
**LoRA**: Low-Rank Adaptation - parameter-efficient fine-tuning technique
|
| 362 |
-
|
| 363 |
-
## Model Card Authors
|
| 364 |
-
|
| 365 |
-
**Primary Author:** basiphobe
|
| 366 |
-
**Model Development:** Individual research project for SCI community support
|
| 367 |
-
**Data Sources:** Curated from medical literature and educational materials created by healthcare professionals
|
| 368 |
-
**Validation Status:** Model has not undergone independent medical professional validation
|
| 369 |
|
| 370 |
-
##
|
| 371 |
|
| 372 |
-
|
| 373 |
-
- **Hugging Face:** https://huggingface.co/basiphobe/sci-assistant
|
| 374 |
-
- **Issues:** Please report issues through Hugging Face model repository
|
| 375 |
-
- **Medical Concerns:** Always consult qualified healthcare professionals
|
| 376 |
|
| 377 |
-
|
| 378 |
-
### Framework versions
|
| 379 |
|
| 380 |
-
-
|
|
|
|
|
|
| 1 |
+
# SCI Assistant 7B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
+
A specialized language model for spinal cord injury (SCI) information and support, based on OpenHermes-2.5-Mistral-7B with custom LoRA fine-tuning.
|
|
|
|
| 4 |
|
| 5 |
## Model Description
|
| 6 |
|
| 7 |
+
This model has been fine-tuned specifically to provide accurate, helpful information about spinal cord injuries, including:
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
- **Medical information** about SCI conditions and symptoms
|
| 10 |
+
- **Practical advice** for daily living with SCI
|
| 11 |
+
- **Equipment recommendations** for wheelchairs, adaptive technology, etc.
|
| 12 |
+
- **Exercise and rehabilitation** guidance
|
| 13 |
+
- **Emotional support** and community resources
|
| 14 |
|
| 15 |
+
## Training Data
|
| 16 |
|
| 17 |
+
The model was trained on curated SCI-related content including:
|
| 18 |
+
- Medical literature and research papers
|
| 19 |
+
- Patient education materials
|
| 20 |
+
- Community forums and discussions
|
| 21 |
+
- Rehabilitation guides and resources
|
| 22 |
|
| 23 |
## Usage
|
| 24 |
|
| 25 |
```python
|
| 26 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
model = AutoModelForCausalLM.from_pretrained("your-username/sci-assistant-7b")
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained("your-username/sci-assistant-7b")
|
| 30 |
|
| 31 |
+
# Example usage
|
| 32 |
+
prompt = "What are the signs of autonomic dysreflexia?"
|
| 33 |
inputs = tokenizer(prompt, return_tensors="pt")
|
| 34 |
+
outputs = model.generate(**inputs, max_length=200)
|
| 35 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 36 |
```
|
| 37 |
|
| 38 |
## Intended Use
|
| 39 |
|
| 40 |
+
- **Educational purposes** - Learning about SCI conditions and management
|
| 41 |
+
- **Community support** - Providing accessible information to SCI community
|
| 42 |
+
- **Research** - Supporting SCI-related research and development
|
|
|
|
|
|
|
| 43 |
|
| 44 |
## Limitations
|
| 45 |
|
| 46 |
+
- This model provides educational information only
|
| 47 |
+
- Always consult healthcare professionals for medical advice
|
| 48 |
+
- Not a replacement for professional medical care
|
| 49 |
+
- May not reflect the most recent medical developments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
## Technical Details
|
| 52 |
|
| 53 |
+
- **Base Model**: teknium/OpenHermes-2.5-Mistral-7B
|
| 54 |
+
- **Fine-tuning**: LoRA (Low-Rank Adaptation)
|
| 55 |
+
- **Parameters**: ~7 billion
|
| 56 |
+
- **Precision**: FP16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
## License
|
| 59 |
|
| 60 |
+
Please respect the original OpenHermes-2.5 license terms.
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
+
## Acknowledgments
|
|
|
|
| 63 |
|
| 64 |
+
Built on the excellent OpenHermes-2.5-Mistral-7B model by Teknium.
|
| 65 |
+
Training data curated from publicly available SCI educational resources.
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"MistralForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"bos_token_id": 1,
|
| 7 |
+
"eos_token_id": 32000,
|
| 8 |
+
"head_dim": 128,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 4096,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 14336,
|
| 13 |
+
"max_position_embeddings": 32768,
|
| 14 |
+
"model_type": "mistral",
|
| 15 |
+
"num_attention_heads": 32,
|
| 16 |
+
"num_hidden_layers": 32,
|
| 17 |
+
"num_key_value_heads": 8,
|
| 18 |
+
"rms_norm_eps": 1e-05,
|
| 19 |
+
"rope_theta": 10000.0,
|
| 20 |
+
"sliding_window": 4096,
|
| 21 |
+
"tie_word_embeddings": false,
|
| 22 |
+
"torch_dtype": "float16",
|
| 23 |
+
"transformers_version": "4.50.3",
|
| 24 |
+
"use_cache": false,
|
| 25 |
+
"vocab_size": 32002
|
| 26 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 32000,
|
| 5 |
+
"transformers_version": "4.50.3"
|
| 6 |
+
}
|
model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0af3ba118f0a9418e007b7dfcb2b06cb43c229fd83687c11e9a62739844aeed9
|
| 3 |
+
size 4943178624
|
model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:051612a9761d6d906d2317c79b6b51938f98495c73606ba383cb66ba3c98423f
|
| 3 |
+
size 4999819232
|
model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8a019c618c1d3c5fe330a4afe1bda6100fcd8bde456aa7ea18e1f937112ea833
|
| 3 |
+
size 4540532640
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 14483496960
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
| 242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
| 292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
| 293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
| 296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
| 297 |
+
}
|
| 298 |
+
}
|
special_tokens_map.json
CHANGED
|
@@ -13,13 +13,6 @@
|
|
| 13 |
"rstrip": false,
|
| 14 |
"single_word": false
|
| 15 |
},
|
| 16 |
-
"pad_token": {
|
| 17 |
-
"content": "<|im_end|>",
|
| 18 |
-
"lstrip": false,
|
| 19 |
-
"normalized": false,
|
| 20 |
-
"rstrip": false,
|
| 21 |
-
"single_word": false
|
| 22 |
-
},
|
| 23 |
"unk_token": {
|
| 24 |
"content": "<unk>",
|
| 25 |
"lstrip": false,
|
|
|
|
| 13 |
"rstrip": false,
|
| 14 |
"single_word": false
|
| 15 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
"unk_token": {
|
| 17 |
"content": "<unk>",
|
| 18 |
"lstrip": false,
|
tokenizer_config.json
CHANGED
|
@@ -52,7 +52,7 @@
|
|
| 52 |
"extra_special_tokens": {},
|
| 53 |
"legacy": true,
|
| 54 |
"model_max_length": 1000000000000000019884624838656,
|
| 55 |
-
"pad_token":
|
| 56 |
"sp_model_kwargs": {},
|
| 57 |
"spaces_between_special_tokens": false,
|
| 58 |
"tokenizer_class": "LlamaTokenizer",
|
|
|
|
| 52 |
"extra_special_tokens": {},
|
| 53 |
"legacy": true,
|
| 54 |
"model_max_length": 1000000000000000019884624838656,
|
| 55 |
+
"pad_token": null,
|
| 56 |
"sp_model_kwargs": {},
|
| 57 |
"spaces_between_special_tokens": false,
|
| 58 |
"tokenizer_class": "LlamaTokenizer",
|