basic-go commited on
Commit
09496f6
·
verified ·
1 Parent(s): 09da3d9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -106
README.md CHANGED
@@ -11,120 +11,19 @@ tags:
11
 
12
  # basic-go/math-ru-sbert
13
 
14
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
- <!--- Describe your model here -->
17
 
18
- ## Usage (Sentence-Transformers)
19
-
20
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
-
22
- ```
23
- pip install -U sentence-transformers
24
- ```
25
-
26
- Then you can use the model like this:
27
 
28
  ```python
29
  from sentence_transformers import SentenceTransformer
30
- sentences = ["This is an example sentence", "Each sentence is converted"]
31
 
32
  model = SentenceTransformer('basic-go/math-ru-sbert')
33
  embeddings = model.encode(sentences)
34
  print(embeddings)
35
  ```
36
 
37
-
38
-
39
- ## Usage (HuggingFace Transformers)
40
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
41
-
42
- ```python
43
- from transformers import AutoTokenizer, AutoModel
44
- import torch
45
-
46
-
47
- #Mean Pooling - Take attention mask into account for correct averaging
48
- def mean_pooling(model_output, attention_mask):
49
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
50
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
51
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
52
-
53
-
54
- # Sentences we want sentence embeddings for
55
- sentences = ['This is an example sentence', 'Each sentence is converted']
56
-
57
- # Load model from HuggingFace Hub
58
- tokenizer = AutoTokenizer.from_pretrained('basic-go/math-ru-sbert')
59
- model = AutoModel.from_pretrained('basic-go/math-ru-sbert')
60
-
61
- # Tokenize sentences
62
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
63
-
64
- # Compute token embeddings
65
- with torch.no_grad():
66
- model_output = model(**encoded_input)
67
-
68
- # Perform pooling. In this case, mean pooling.
69
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
70
-
71
- print("Sentence embeddings:")
72
- print(sentence_embeddings)
73
- ```
74
-
75
-
76
-
77
- ## Evaluation Results
78
-
79
- <!--- Describe how your model was evaluated -->
80
-
81
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=basic-go/math-ru-sbert)
82
-
83
-
84
- ## Training
85
- The model was trained with the parameters:
86
-
87
- **DataLoader**:
88
-
89
- `torch.utils.data.dataloader.DataLoader` of length 94823 with parameters:
90
- ```
91
- {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
92
- ```
93
-
94
- **Loss**:
95
-
96
- `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
97
- ```
98
- {'scale': 20.0, 'similarity_fct': 'cos_sim'}
99
- ```
100
-
101
- Parameters of the fit()-Method:
102
- ```
103
- {
104
- "epochs": 10,
105
- "evaluation_steps": 0,
106
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
107
- "max_grad_norm": 1,
108
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
109
- "optimizer_params": {
110
- "lr": 2e-05
111
- },
112
- "scheduler": "WarmupLinear",
113
- "steps_per_epoch": null,
114
- "warmup_steps": 94823,
115
- "weight_decay": 0.01
116
- }
117
- ```
118
-
119
-
120
- ## Full Model Architecture
121
- ```
122
- SentenceTransformer(
123
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
124
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
125
- )
126
- ```
127
-
128
- ## Citing & Authors
129
-
130
- <!--- Describe where people can find more information -->
 
11
 
12
  # basic-go/math-ru-sbert
13
 
14
+ Это [Sentence Transformer](https://www.SBERT.net), предназначенный для векторизации текстов с математическими выражениями. Полученные векторные представления могут использоваться для выявления дубликатов, оценки семантического сходства и информационного поиска.
15
 
16
+ ## Использование
17
 
18
+ Вместе с предустановленной библиотекой [sentence-transformers](https://www.SBERT.net) модель можно использовать следующим образом:
 
 
 
 
 
 
 
 
19
 
20
  ```python
21
  from sentence_transformers import SentenceTransformer
22
+ sentences = [r"\(\int \rho(x) dx\)"]
23
 
24
  model = SentenceTransformer('basic-go/math-ru-sbert')
25
  embeddings = model.encode(sentences)
26
  print(embeddings)
27
  ```
28
 
29
+ Вместе с тем рекомендуется использовать модель в составе библиотеки [Emma](https://github.com/basic-go-ahead/emma) для актуальной пред- и постобработки данных.