Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
```
|
2 |
+
#!/usr/bin/env python
|
3 |
+
import torch
|
4 |
+
from transformers import (
|
5 |
+
AutoConfig,
|
6 |
+
AutoTokenizer,
|
7 |
+
AutoModelForCausalLM,
|
8 |
+
LlamaForSequenceClassification,
|
9 |
+
)
|
10 |
+
# install torch, transformers, accelerate
|
11 |
+
|
12 |
+
def main():
|
13 |
+
# Define the input and output repository names.
|
14 |
+
input_model_id = "meta-llama/Meta-Llama-3-70B-Instruct"
|
15 |
+
split_2 = input_model_id.split("/")[1]
|
16 |
+
output_model_id = f"baseten/example-{split_2}ForSequenceClassification"
|
17 |
+
|
18 |
+
# Load the original configuration.
|
19 |
+
# (If needed, add trust_remote_code=True for custom implementations.)
|
20 |
+
config = AutoConfig.from_pretrained(input_model_id)
|
21 |
+
|
22 |
+
# Update the config for a sequence classification task with 10 labels.
|
23 |
+
num_labels = 30
|
24 |
+
config.num_labels = num_labels
|
25 |
+
config.id2label = {i: f"token activation {i}" for i in range(num_labels)}
|
26 |
+
config.label2id = {f"token activation {i}": i for i in range(num_labels)}
|
27 |
+
|
28 |
+
# Download the tokenizer from the original model.
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(input_model_id)
|
30 |
+
|
31 |
+
# Load the original causal LM model.
|
32 |
+
lm_model = AutoModelForCausalLM.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True)
|
33 |
+
config.architectures = ["LlamaForSequenceClassification"]
|
34 |
+
del lm_model.model
|
35 |
+
print("loaded lm model")
|
36 |
+
# Initialize the sequence classification model.
|
37 |
+
# NOTE: We are using the built-in LlamaForSequenceClassification,
|
38 |
+
# which uses a `.score` attribute as the output head.
|
39 |
+
seq_cls_model = LlamaForSequenceClassification.from_pretrained(input_model_id, config=config, device_map="auto", low_cpu_mem_usage=True)
|
40 |
+
|
41 |
+
# --- Initialize the Classification Head ---
|
42 |
+
# Here we re-use the first 10 rows from the original LM head
|
43 |
+
# (i.e. rows 0 to 9) to initialize the new classification head.
|
44 |
+
with torch.no_grad():
|
45 |
+
# lm_model.lm_head.weight has shape [vocab_size, hidden_size]
|
46 |
+
# We take the first 10 rows to form a [10, hidden_size] weight matrix.
|
47 |
+
seq_cls_model.score.weight.copy_(lm_model.lm_head.weight.data[:num_labels, :])
|
48 |
+
if lm_model.lm_head.bias is not None:
|
49 |
+
seq_cls_model.score.bias.copy_(lm_model.lm_head.bias.data[:num_labels])
|
50 |
+
|
51 |
+
# Optionally, save the new model locally.
|
52 |
+
# save_directory = f"./{output_model_id.replace('/','_')}"
|
53 |
+
# seq_cls_model.save_pretrained(save_directory)
|
54 |
+
# tokenizer.save_pretrained(save_directory)
|
55 |
+
|
56 |
+
# Push the new model and tokenizer to the Hub.
|
57 |
+
# (Ensure you are authenticated with Hugging Face Hub via `huggingface-cli login`.)
|
58 |
+
tokenizer.push_to_hub(output_model_id)
|
59 |
+
seq_cls_model.push_to_hub(output_model_id)
|
60 |
+
|
61 |
+
|
62 |
+
print(f"New model pushed to the Hub: {output_model_id}")
|
63 |
+
|
64 |
+
if __name__ == "__main__":
|
65 |
+
main()
|
66 |
+
|
67 |
+
```
|