bardofcodes commited on
Commit
f1b0489
·
verified ·
1 Parent(s): e8f69d9

Delete analogy_projector/pipeline.py

Browse files
Files changed (1) hide show
  1. analogy_projector/pipeline.py +0 -741
analogy_projector/pipeline.py DELETED
@@ -1,741 +0,0 @@
1
- """
2
- ADOBE CONFIDENTIAL
3
- Copyright 2024 Adobe
4
- All Rights Reserved.
5
- NOTICE: All information contained herein is, and remains
6
- the property of Adobe and its suppliers, if any. The intellectual
7
- and technical concepts contained herein are proprietary to Adobe
8
- and its suppliers and are protected by all applicable intellectual
9
- property laws, including trade secret and copyright laws.
10
- Dissemination of this information or reproduction of this material
11
- is strictly forbidden unless prior written permission is obtained
12
- from Adobe.
13
- """
14
-
15
- from typing import Callable, List, Optional, Union
16
- import inspect
17
- import einops
18
- import PIL.Image
19
- import numpy as np
20
- import torch as th
21
- import torch.nn as nn
22
- from torchvision import transforms
23
-
24
- from diffusers import ModelMixin
25
- from transformers import AutoModel, AutoConfig, SiglipVisionConfig, Dinov2Config, Dinov2Model
26
- from transformers import SiglipVisionModel
27
- from diffusers import DiffusionPipeline
28
- from diffusers.image_processor import VaeImageProcessor
29
- from diffusers.models import AutoencoderKL, UNet2DConditionModel
30
- from diffusers.schedulers import KarrasDiffusionSchedulers
31
- from diffusers.utils.torch_utils import randn_tensor
32
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
33
-
34
- from diffusers.configuration_utils import ConfigMixin, register_to_config
35
- # REf: https://github.com/tatp22/multidim-positional-encoding/tree/master
36
-
37
-
38
- OUT_SIZE = 768
39
- IN_SIZE = 2048
40
-
41
- DINO_SIZE = 224
42
- DINO_MEAN = [0.485, 0.456, 0.406]
43
- DINO_STD = [0.229, 0.224, 0.225]
44
-
45
- SIGLIP_SIZE = 256
46
- SIGLIP_MEAN = [0.5]
47
- SIGLIP_STD = [0.5]
48
-
49
-
50
- def get_emb(sin_inp):
51
- """
52
- Gets a base embedding for one dimension with sin and cos intertwined
53
- """
54
- emb = th.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
55
- return th.flatten(emb, -2, -1)
56
-
57
-
58
- class PositionalEncoding1D(nn.Module):
59
- def __init__(self, channels):
60
- """
61
- :param channels: The last dimension of the tensor you want to apply pos emb to.
62
- """
63
- super(PositionalEncoding1D, self).__init__()
64
- self.org_channels = channels
65
- channels = int(np.ceil(channels / 2) * 2)
66
- self.channels = channels
67
- inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
68
- self.register_buffer("inv_freq", inv_freq)
69
- self.register_buffer("cached_penc", None, persistent=False)
70
-
71
- def forward(self, tensor):
72
- """
73
- :param tensor: A 3d tensor of size (batch_size, x, ch)
74
- :return: Positional Encoding Matrix of size (batch_size, x, ch)
75
- """
76
- if len(tensor.shape) != 3:
77
- raise RuntimeError("The input tensor has to be 3d!")
78
-
79
- if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
80
- return self.cached_penc
81
-
82
- self.cached_penc = None
83
- batch_size, x, orig_ch = tensor.shape
84
- pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
85
- sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
86
- emb_x = get_emb(sin_inp_x)
87
- emb = th.zeros((x, self.channels), device=tensor.device, dtype=tensor.dtype)
88
- emb[:, : self.channels] = emb_x
89
-
90
- self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1)
91
- return self.cached_penc
92
-
93
-
94
-
95
- class PositionalEncoding3D(nn.Module):
96
- def __init__(self, channels):
97
- """
98
- :param channels: The last dimension of the tensor you want to apply pos emb to.
99
- """
100
- super(PositionalEncoding3D, self).__init__()
101
- self.org_channels = channels
102
- channels = int(np.ceil(channels / 6) * 2)
103
- if channels % 2:
104
- channels += 1
105
- self.channels = channels
106
- inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
107
- self.register_buffer("inv_freq", inv_freq)
108
- self.register_buffer("cached_penc", None, persistent=False)
109
-
110
- def forward(self, tensor):
111
- """
112
- :param tensor: A 5d tensor of size (batch_size, x, y, z, ch)
113
- :return: Positional Encoding Matrix of size (batch_size, x, y, z, ch)
114
- """
115
- if len(tensor.shape) != 5:
116
- raise RuntimeError("The input tensor has to be 5d!")
117
-
118
- if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
119
- return self.cached_penc
120
-
121
- self.cached_penc = None
122
- batch_size, x, y, z, orig_ch = tensor.shape
123
- pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
124
- pos_y = th.arange(y, device=tensor.device, dtype=self.inv_freq.dtype)
125
- pos_z = th.arange(z, device=tensor.device, dtype=self.inv_freq.dtype)
126
- sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
127
- sin_inp_y = th.einsum("i,j->ij", pos_y, self.inv_freq)
128
- sin_inp_z = th.einsum("i,j->ij", pos_z, self.inv_freq)
129
- emb_x = get_emb(sin_inp_x).unsqueeze(1).unsqueeze(1)
130
- emb_y = get_emb(sin_inp_y).unsqueeze(1)
131
- emb_z = get_emb(sin_inp_z)
132
- emb = th.zeros(
133
- (x, y, z, self.channels * 3),
134
- device=tensor.device,
135
- dtype=tensor.dtype,
136
- )
137
- emb[:, :, :, : self.channels] = emb_x
138
- emb[:, :, :, self.channels : 2 * self.channels] = emb_y
139
- emb[:, :, :, 2 * self.channels :] = emb_z
140
-
141
- self.cached_penc = emb[None, :, :, :, :orig_ch].repeat(batch_size, 1, 1, 1, 1)
142
- return self.cached_penc
143
-
144
- class AnalogyInputProcessor(ModelMixin, ConfigMixin):
145
-
146
- @register_to_config
147
- def __init__(self,):
148
- super(AnalogyInputProcessor, self).__init__()
149
-
150
- self.dino_transform = transforms.Compose(
151
- [
152
- transforms.Resize((DINO_SIZE, DINO_SIZE)),
153
- transforms.ToTensor(),
154
- transforms.Normalize(DINO_MEAN, DINO_STD), # SIGLIP normalization
155
- ]
156
- )
157
-
158
- self.siglip_transform = transforms.Compose(
159
- [
160
- transforms.Resize((SIGLIP_SIZE, SIGLIP_SIZE)),
161
- transforms.ToTensor(),
162
- transforms.Normalize(SIGLIP_MEAN, SIGLIP_STD), # SIGLIP normalization
163
- ]
164
- )
165
-
166
- dino_mean = th.tensor(DINO_MEAN).view(1, 3, 1, 1)
167
- dino_std = th.tensor(DINO_STD).view(1, 3, 1, 1)
168
- siglip_mean = [SIGLIP_MEAN[0],] * 3
169
- siglip_std = [SIGLIP_STD[0],] * 3
170
- siglip_mean = th.tensor(siglip_mean).view(1, 3, 1, 1)
171
- siglip_std = th.tensor(siglip_std).view(1, 3, 1, 1)
172
- self.register_buffer("dino_mean", dino_mean)
173
- self.register_buffer("dino_std", dino_std)
174
- self.register_buffer("siglip_mean", siglip_mean)
175
- self.register_buffer("siglip_std", siglip_std)
176
-
177
- def __call__(self, analogy_prompt):
178
- # List of tuples of (A, A*, B)
179
- img_a_dino = []
180
- img_a_siglip = []
181
- img_a_star_dino = []
182
- img_a_star_siglip = []
183
- img_b_dino = []
184
- img_b_siglip = []
185
-
186
- for im_set in analogy_prompt:
187
- img_a, img_a_star, img_b = im_set
188
- img_a_dino.append(self.dino_transform(img_a))
189
- img_a_siglip.append(self.siglip_transform(img_a))
190
- img_a_star_dino.append(self.dino_transform(img_a_star))
191
- img_a_star_siglip.append(self.siglip_transform(img_a_star))
192
- img_b_dino.append(self.dino_transform(img_b))
193
- img_b_siglip.append(self.siglip_transform(img_b))
194
-
195
- img_a_dino = th.stack(img_a_dino, 0)
196
- img_a_siglip = th.stack(img_a_siglip, 0)
197
- img_a_star_dino = th.stack(img_a_star_dino, 0)
198
- img_a_star_siglip = th.stack(img_a_star_siglip, 0)
199
- img_b_dino = th.stack(img_b_dino, 0)
200
- img_b_siglip = th.stack(img_b_siglip, 0)
201
-
202
- dino_combined_input = th.stack([img_b_dino, img_a_dino, img_a_star_dino], 0)
203
- siglip_combined_input = th.stack([img_b_siglip, img_a_siglip, img_a_star_siglip], 0)
204
-
205
- return dino_combined_input, siglip_combined_input
206
- def get_negative(self, dino_in, siglip_in):
207
-
208
- dino_i = ((dino_in * 0 + 0.5) - self.dino_mean) / self.dino_std
209
- siglip_i = ((siglip_in * 0 + 0.5) - self.siglip_mean) / self.siglip_std
210
- return dino_i, siglip_i
211
-
212
-
213
- class AnalogyProjector(ModelMixin, ConfigMixin):
214
-
215
- @register_to_config
216
- def __init__(self):
217
- super(AnalogyProjector, self).__init__()
218
- self.projector = DinoSiglipMixer()
219
- self.pos_embd_1D = PositionalEncoding1D(OUT_SIZE)
220
- self.pos_embd_3D = PositionalEncoding3D(OUT_SIZE)
221
-
222
-
223
- def forward(self, dino_in, siglip_in, batch_size):
224
-
225
- image_embeddings = self.projector(dino_in, siglip_in)
226
-
227
- image_embeddings = einops.rearrange(image_embeddings, '(k b) t d -> b k t d', b=batch_size)
228
- image_embeddings = self.position_embd(image_embeddings)
229
- return image_embeddings
230
-
231
- def position_embd(self, image_embeddings, concat=False):
232
- canvas_embd = image_embeddings[:, :, 1:, :]
233
- batch_size = canvas_embd.shape[0]
234
- type_size = canvas_embd.shape[1]
235
- xy_size = canvas_embd.shape[2]
236
-
237
- x_size = int(xy_size ** 0.5)
238
-
239
- canvas_embd = canvas_embd.reshape(batch_size, type_size, x_size, x_size, -1)
240
- if concat:
241
- canvas_embd = th.cat([canvas_embd, self.pos_embd_3D(canvas_embd)], -1)
242
- else:
243
- canvas_embd = self.pos_embd_3D(canvas_embd) + canvas_embd
244
- canvas_embd = canvas_embd.reshape(batch_size, type_size, xy_size, -1)
245
-
246
- class_embd = image_embeddings[:, :, 0, :]
247
- if concat:
248
- class_embd = th.cat([class_embd, self.pos_embd_1D(class_embd)], -1)
249
- else:
250
- class_embd = self.pos_embd_1D(class_embd) + class_embd
251
- all_embd_list = []
252
- for i in range(type_size):
253
- all_embd_list.append(class_embd[:, i:i+1])
254
- all_embd_list.append(canvas_embd[:, i])
255
- image_embeddings = th.cat(all_embd_list, 1)
256
- return image_embeddings
257
-
258
-
259
- class HighLowMixer(th.nn.Module):
260
- def __init__(self, in_size=IN_SIZE, out_size=OUT_SIZE):
261
- super().__init__()
262
- mid_size = (in_size + out_size) // 2
263
-
264
- self.lower_projector = th.nn.Sequential(
265
- th.nn.LayerNorm(IN_SIZE//2),
266
- th.nn.SiLU()
267
- )
268
- self.upper_projector = th.nn.Sequential(
269
- th.nn.LayerNorm(IN_SIZE//2),
270
- th.nn.SiLU()
271
- )
272
- self.projectors = th.nn.ModuleList([
273
- # add layer norm
274
- th.nn.Linear(in_size, mid_size),
275
- th.nn.SiLU(),
276
- th.nn.Linear(mid_size, out_size)
277
- ])
278
- # initialize
279
- for proj in self.projectors:
280
- if isinstance(proj, th.nn.Linear):
281
- th.nn.init.xavier_uniform_(proj.weight)
282
- th.nn.init.zeros_(proj.bias)
283
-
284
- def forward(self, lower_in, upper_in, ):
285
- # ALso format lower_in
286
- lower_in = self.lower_projector(lower_in)
287
- upper_in = self.upper_projector(upper_in)
288
- x = th.cat([lower_in, upper_in], -1)
289
- for proj in self.projectors:
290
- x = proj(x)
291
- return x
292
-
293
- class DinoSiglipMixer(th.nn.Module):
294
- def __init__(self, in_size=OUT_SIZE * 2, out_size=OUT_SIZE):
295
- super().__init__()
296
- self.dino_projector = HighLowMixer()
297
- self.siglip_projector = HighLowMixer()
298
- self.projectors = th.nn.Sequential(
299
- th.nn.SiLU(),
300
- th.nn.Linear(in_size, out_size),
301
- )
302
- # initialize
303
- for proj in self.projectors:
304
- if isinstance(proj, th.nn.Linear):
305
- th.nn.init.xavier_uniform_(proj.weight)
306
- th.nn.init.zeros_(proj.bias)
307
-
308
-
309
- def forward(self, dino_in, siglip_in):
310
- # ALso format lower_in
311
- lower, upper = th.chunk(dino_in, 2, -1)
312
- dino_out = self.dino_projector(lower, upper)
313
- lower, upper = th.chunk(siglip_in, 2, -1)
314
- siglip_out = self.siglip_projector(lower, upper)
315
- x = th.cat([dino_out, siglip_out], -1)
316
- for proj in self.projectors:
317
- x = proj(x)
318
- return x
319
-
320
- class AnalogyEncoder(ModelMixin, ConfigMixin):
321
- @register_to_config
322
- def __init__(self, load_pretrained=False,
323
- dino_config_dict=None, siglip_config_dict=None):
324
- super().__init__()
325
- if load_pretrained:
326
- image_encoder_dino = AutoModel.from_pretrained('facebook/dinov2-large', torch_dtype=th.float16)
327
- image_encoder_siglip = SiglipVisionModel.from_pretrained("google/siglip-large-patch16-256", torch_dtype=th.float16, attn_implementation="sdpa")
328
- else:
329
- image_encoder_dino = AutoModel.from_config(Dinov2Config.from_dict(dino_config_dict))
330
- image_encoder_siglip = AutoModel.from_config(SiglipVisionConfig.from_dict(siglip_config_dict))
331
-
332
- image_encoder_dino.requires_grad_(False)
333
- image_encoder_dino = image_encoder_dino.to(memory_format=th.channels_last)
334
-
335
- image_encoder_siglip.requires_grad_(False)
336
- image_encoder_siglip = image_encoder_siglip.to(memory_format=th.channels_last)
337
- self.image_encoder_dino = image_encoder_dino
338
- self.image_encoder_siglip = image_encoder_siglip
339
-
340
-
341
- def dino_normalization(self, encoder_output):
342
- embeds = encoder_output.last_hidden_state
343
- embeds_pooled = embeds[:, 0:1]
344
- embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
345
- return embeds
346
-
347
- def siglip_normalization(self, encoder_output):
348
- embeds = th.cat ([encoder_output.pooler_output[:, None, :], encoder_output.last_hidden_state], dim=1)
349
- embeds_pooled = embeds[:, 0:1]
350
- embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
351
- return embeds
352
-
353
- def forward(self, dino_in, siglip_in):
354
-
355
- x_1 = self.image_encoder_dino(dino_in, output_hidden_states=True)
356
- x_1_first = x_1.hidden_states[0]
357
- x_1 = self.dino_normalization(x_1)
358
- x_2 = self.image_encoder_siglip(siglip_in, output_hidden_states=True)
359
- x_2_first = x_2.hidden_states[0]
360
- x_2_first_pool = th.mean(x_2_first, dim=1, keepdim=True)
361
- x_2_first = th.cat([x_2_first_pool, x_2_first], 1)
362
- x_2 = self.siglip_normalization(x_2)
363
- dino_embd = th.cat([x_1, x_1_first], -1)
364
- siglip_embd = th.cat([x_2, x_2_first], -1)
365
- return dino_embd, siglip_embd
366
-
367
-
368
- class PatternAnalogyTrifuser(DiffusionPipeline):
369
- r"""
370
- This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
371
- library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
372
- """
373
-
374
- model_cpu_offload_seq = "bert->unet->vqvae"
375
-
376
- analogy_input_processor: AnalogyInputProcessor
377
- analogy_encoder: AnalogyEncoder
378
- analogy_projector: AnalogyProjector
379
- unet: UNet2DConditionModel
380
- vae: AutoencoderKL
381
- scheduler: KarrasDiffusionSchedulers
382
-
383
- def __init__(self,
384
- analogy_input_processor: AnalogyInputProcessor,
385
- analogy_projector: AnalogyProjector,
386
- analogy_encoder: AnalogyEncoder,
387
- unet: UNet2DConditionModel,
388
- vae: AutoencoderKL,
389
- scheduler: KarrasDiffusionSchedulers,):
390
-
391
-
392
- super().__init__()
393
- self.register_modules(
394
- analogy_input_processor=analogy_input_processor,
395
- analogy_encoder=analogy_encoder,
396
- analogy_projector=analogy_projector,
397
- unet=unet,
398
- vae=vae,
399
- scheduler=scheduler,
400
- )
401
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
402
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
403
-
404
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline.check_inputs
405
- def check_inputs(self, analogy_prompt, negative_analogy_prompt, height, width, callback_steps):
406
- if (
407
- not isinstance(analogy_prompt, th.Tensor)
408
- and not isinstance(analogy_prompt, PIL.Image.Image)
409
- and not isinstance(analogy_prompt, list)
410
- ):
411
- raise ValueError(
412
- "`analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
413
- f" {type(analogy_prompt)}"
414
- )
415
- if not negative_analogy_prompt is None:
416
- if (
417
- not isinstance(negative_analogy_prompt, th.Tensor)
418
- and not isinstance(negative_analogy_prompt, PIL.Image.Image)
419
- and not isinstance(negative_analogy_prompt, list)
420
- ):
421
- raise ValueError(
422
- "`negative_analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
423
- f" {type(negative_analogy_prompt)}"
424
- )
425
-
426
-
427
- if height % 8 != 0 or width % 8 != 0:
428
- raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
429
-
430
- if (callback_steps is None) or (
431
- callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
432
- ):
433
- raise ValueError(
434
- f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
435
- f" {type(callback_steps)}."
436
- )
437
-
438
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
439
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
440
- shape = (
441
- batch_size,
442
- num_channels_latents,
443
- int(height) // self.vae_scale_factor,
444
- int(width) // self.vae_scale_factor,
445
- )
446
- if isinstance(generator, list) and len(generator) != batch_size:
447
- raise ValueError(
448
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
449
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
450
- )
451
-
452
- if latents is None:
453
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
454
- else:
455
- latents = latents.to(device)
456
-
457
- # scale the initial noise by the standard deviation required by the scheduler
458
- latents = latents * self.scheduler.init_noise_sigma
459
- return latents
460
-
461
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
462
- def prepare_extra_step_kwargs(self, generator, eta):
463
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
464
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
465
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
466
- # and should be between [0, 1]
467
-
468
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
469
- extra_step_kwargs = {}
470
- if accepts_eta:
471
- extra_step_kwargs["eta"] = eta
472
-
473
- # check if the scheduler accepts generator
474
- accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
475
- if accepts_generator:
476
- extra_step_kwargs["generator"] = generator
477
- return extra_step_kwargs
478
-
479
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
480
- def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
481
- shape = (
482
- batch_size,
483
- num_channels_latents,
484
- int(height) // self.vae_scale_factor,
485
- int(width) // self.vae_scale_factor,
486
- )
487
- if isinstance(generator, list) and len(generator) != batch_size:
488
- raise ValueError(
489
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
490
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
491
- )
492
-
493
- if latents is None:
494
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
495
- else:
496
- latents = latents.to(device)
497
-
498
- # scale the initial noise by the standard deviation required by the scheduler
499
- latents = latents * self.scheduler.init_noise_sigma
500
- return latents
501
-
502
- def _encode_prompt(self, analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
503
- r"""
504
- Encodes the prompt into text encoder hidden states.
505
-
506
- Args:
507
- prompt (`str` or `List[str]`):
508
- prompt to be encoded
509
- device: (`torch.device`):
510
- torch device
511
- num_images_per_prompt (`int`):
512
- number of images that should be generated per prompt
513
- do_classifier_free_guidance (`bool`):
514
- whether to use classifier free guidance or not
515
- negative_prompt (`str` or `List[str]`):
516
- The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
517
- if `guidance_scale` is less than `1`).
518
- """
519
- weight_dtype = self.unet.dtype
520
- dino_input, siglip_input = self.analogy_input_processor(analogy_prompt)
521
- dino_input = dino_input.to(device=device).to(dtype=weight_dtype)
522
- siglip_input = siglip_input.to(device=device).to(dtype=weight_dtype)
523
- batch_size = dino_input.shape[1]
524
- dino_input_reshaped = einops.rearrange(dino_input, "k b c h w -> (k b) c h w")
525
- siglip_input_reshaped = einops.rearrange(siglip_input, "k b c h w -> (k b) c h w")
526
- dino_enc, siglip_enc = self.analogy_encoder(dino_input_reshaped, siglip_input_reshaped)
527
- image_embeddings = self.analogy_projector(dino_enc, siglip_enc, batch_size)
528
- # Check size here.
529
-
530
- bs_embed, seq_len, _ = image_embeddings.shape
531
- image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)
532
- # get unconditional embeddings for classifier free guidance
533
- if do_classifier_free_guidance:
534
- uncond_images: List[str]
535
- if negative_prompt is None:
536
- uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size
537
- elif type(negative_prompt) is not type(analogy_prompt):
538
- raise TypeError(
539
- f"`negative_prompt` should be the same type to `prompt`, but got {type(analogy_prompt)} !="
540
- f" {type(negative_prompt)}."
541
- )
542
- elif isinstance(negative_prompt, PIL.Image.Image):
543
- uncond_images = [negative_prompt]
544
- elif batch_size != len(negative_prompt):
545
- raise ValueError(
546
- f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
547
- f" {analogy_prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
548
- " the batch size of `prompt`."
549
- )
550
- else:
551
- uncond_images = negative_prompt
552
- dino_neg, siglip_neg = self.analogy_input_processor.get_negative(dino_input, siglip_input)
553
-
554
- dino_neg = dino_neg.to(device=device).to(dtype=weight_dtype)
555
- siglip_neg = siglip_neg.to(device=device).to(dtype=weight_dtype)
556
- dino_neg_reshaped = einops.rearrange(dino_neg, "k b c h w -> (k b) c h w")
557
- siglip_neg_reshaped = einops.rearrange(siglip_neg, "k b c h w -> (k b) c h w")
558
- dino_neg_enc, siglip_neg_enc = self.analogy_encoder(dino_neg_reshaped, siglip_neg_reshaped)
559
- negative_prompt_embeds = self.analogy_projector(dino_neg_enc, siglip_neg_enc, batch_size)
560
-
561
- negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1, 1)
562
- image_embeddings = th.cat([negative_prompt_embeds, image_embeddings])
563
-
564
-
565
- return image_embeddings
566
-
567
- @th.no_grad()
568
- def __call__(
569
- self,
570
- analogy_prompt: Union[str, List[str]] = None,
571
- num_inference_steps: int = 50,
572
- guidance_scale: float = 7.5,
573
- height: Optional[int] = None,
574
- width: Optional[int] = None,
575
- negative_analogy_prompt: Optional[Union[str, List[str]]] = None,
576
- num_images_per_prompt: Optional[int] = 1,
577
- eta: float = 0.0,
578
- generator: Optional[Union[th.Generator, List[th.Generator]]] = None,
579
- latents: Optional[th.FloatTensor] = None,
580
- output_type: Optional[str] = "pil",
581
- return_dict: bool = True,
582
- callback: Optional[Callable[[int, int, th.Tensor], None]] = None,
583
- callback_steps: int = 1,
584
- start_step: int = 0,
585
- ):
586
- r"""
587
- The call function to the pipeline for generation.
588
-
589
- Args:
590
- image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`):
591
- The image prompt or prompts to guide the image generation.
592
- height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
593
- The height in pixels of the generated image.
594
- width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
595
- The width in pixels of the generated image.
596
- num_inference_steps (`int`, *optional*, defaults to 50):
597
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
598
- expense of slower inference.
599
- guidance_scale (`float`, *optional*, defaults to 7.5):
600
- A higher guidance scale value encourages the model to generate images closely linked to the text
601
- `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
602
- negative_prompt (`str` or `List[str]`, *optional*):
603
- The prompt or prompts to guide what to not include in image generation. If not defined, you need to
604
- pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
605
- num_images_per_prompt (`int`, *optional*, defaults to 1):
606
- The number of images to generate per prompt.
607
- eta (`float`, *optional*, defaults to 0.0):
608
- Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
609
- to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
610
- generator (`torch.Generator`, *optional*):
611
- A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
612
- generation deterministic.
613
- latents (`torch.Tensor`, *optional*):
614
- Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
615
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
616
- tensor is generated by sampling using the supplied random `generator`.
617
- output_type (`str`, *optional*, defaults to `"pil"`):
618
- The output format of the generated image. Choose between `PIL.Image` or `np.array`.
619
- return_dict (`bool`, *optional*, defaults to `True`):
620
- Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
621
- plain tuple.
622
- callback (`Callable`, *optional*):
623
- A function that calls every `callback_steps` steps during inference. The function is called with the
624
- following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
625
- callback_steps (`int`, *optional*, defaults to 1):
626
- The frequency at which the `callback` function is called. If not specified, the callback is called at
627
- every step.
628
-
629
- Examples:
630
-
631
- ```py
632
- >>> from diffusers import VersatileDiffusionImageVariationPipeline
633
- >>> import torch
634
- >>> import requests
635
- >>> from io import BytesIO
636
- >>> from PIL import Image
637
-
638
- >>> # let's download an initial image
639
- >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
640
-
641
- >>> response = requests.get(url)
642
- >>> image = Image.open(BytesIO(response.content)).convert("RGB")
643
-
644
- >>> pipe = VersatileDiffusionImageVariationPipeline.from_pretrained(
645
- ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16
646
- ... )
647
- >>> pipe = pipe.to("cuda")
648
-
649
- >>> generator = torch.Generator(device="cuda").manual_seed(0)
650
- >>> image = pipe(image, generator=generator).images[0]
651
- >>> image.save("./car_variation.png")
652
- ```
653
-
654
- Returns:
655
- [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
656
- If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
657
- otherwise a `tuple` is returned where the first element is a list with the generated images.
658
- """
659
-
660
- # 1. Check inputs. Raise error if not correct
661
- height = height or self.unet.config.sample_size * self.vae_scale_factor
662
- width = width or self.unet.config.sample_size * self.vae_scale_factor
663
-
664
- # 1. Check inputs. Raise error if not correct
665
- self.check_inputs(analogy_prompt, negative_analogy_prompt, height, width, callback_steps)
666
-
667
- # 2. Define call parameters
668
- if isinstance(analogy_prompt, list):
669
- batch_size = len(analogy_prompt)
670
- elif isinstance(analogy_prompt, tuple):
671
- batch_size = 1
672
- else:
673
- raise ValueError(
674
- f"`analogy_prompt` has to be a list of images or a tuple of images but is of type {type(analogy_prompt)}"
675
- )
676
- device = self._execution_device
677
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
678
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
679
- # corresponds to doing no classifier free guidance.
680
- do_classifier_free_guidance = guidance_scale > 1.0
681
-
682
- # 3. Encode input prompt
683
- analogy_embeddings = self._encode_prompt(
684
- analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_analogy_prompt
685
- )
686
-
687
- # 4. Prepare timesteps
688
- self.scheduler.set_timesteps(num_inference_steps, device=device)
689
-
690
- timesteps = self.scheduler.timesteps
691
- # Now this should be from start step onwards
692
- timesteps = timesteps[start_step:]
693
- # 5. Prepare latent variables
694
- num_channels_latents = self.unet.config.in_channels
695
- latents = self.prepare_latents(
696
- batch_size * num_images_per_prompt,
697
- num_channels_latents,
698
- height,
699
- width,
700
- analogy_embeddings.dtype,
701
- device,
702
- generator,
703
- latents,
704
- )
705
-
706
- # 6. Prepare extra step kwargs.
707
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
708
-
709
- # 7. Denoising loop
710
- for i, t in enumerate(self.progress_bar(timesteps)):
711
- # expand the latents if we are doing classifier free guidance
712
- latent_model_input = th.cat([latents] * 2) if do_classifier_free_guidance else latents
713
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
714
-
715
- # predict the noise residual
716
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=analogy_embeddings).sample
717
-
718
- # perform guidance
719
- if do_classifier_free_guidance:
720
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
721
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
722
-
723
- # compute the previous noisy sample x_t -> x_t-1
724
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
725
-
726
- # call the callback, if provided
727
- if callback is not None and i % callback_steps == 0:
728
- step_idx = i // getattr(self.scheduler, "order", 1)
729
- callback(step_idx, t, latents)
730
-
731
- if not output_type == "latent":
732
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
733
- else:
734
- image = latents
735
-
736
- image = self.image_processor.postprocess(image, output_type=output_type)
737
-
738
- if not return_dict:
739
- return (image,)
740
-
741
- return ImagePipelineOutput(images=image)