Create pipeline.py
Browse files- pipeline.py +741 -0
pipeline.py
ADDED
@@ -0,0 +1,741 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ADOBE CONFIDENTIAL
|
3 |
+
Copyright 2024 Adobe
|
4 |
+
All Rights Reserved.
|
5 |
+
NOTICE: All information contained herein is, and remains
|
6 |
+
the property of Adobe and its suppliers, if any. The intellectual
|
7 |
+
and technical concepts contained herein are proprietary to Adobe
|
8 |
+
and its suppliers and are protected by all applicable intellectual
|
9 |
+
property laws, including trade secret and copyright laws.
|
10 |
+
Dissemination of this information or reproduction of this material
|
11 |
+
is strictly forbidden unless prior written permission is obtained
|
12 |
+
from Adobe.
|
13 |
+
"""
|
14 |
+
|
15 |
+
from typing import Callable, List, Optional, Union
|
16 |
+
import inspect
|
17 |
+
import einops
|
18 |
+
import PIL.Image
|
19 |
+
import numpy as np
|
20 |
+
import torch as th
|
21 |
+
import torch.nn as nn
|
22 |
+
from torchvision import transforms
|
23 |
+
|
24 |
+
from diffusers import ModelMixin
|
25 |
+
from transformers import AutoModel, AutoConfig, SiglipVisionConfig, Dinov2Config, Dinov2Model
|
26 |
+
from transformers import SiglipVisionModel
|
27 |
+
from diffusers import DiffusionPipeline
|
28 |
+
from diffusers.image_processor import VaeImageProcessor
|
29 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
30 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
31 |
+
from diffusers.utils.torch_utils import randn_tensor
|
32 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
33 |
+
|
34 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
35 |
+
# REf: https://github.com/tatp22/multidim-positional-encoding/tree/master
|
36 |
+
|
37 |
+
|
38 |
+
OUT_SIZE = 768
|
39 |
+
IN_SIZE = 2048
|
40 |
+
|
41 |
+
DINO_SIZE = 224
|
42 |
+
DINO_MEAN = [0.485, 0.456, 0.406]
|
43 |
+
DINO_STD = [0.229, 0.224, 0.225]
|
44 |
+
|
45 |
+
SIGLIP_SIZE = 256
|
46 |
+
SIGLIP_MEAN = [0.5]
|
47 |
+
SIGLIP_STD = [0.5]
|
48 |
+
|
49 |
+
|
50 |
+
def get_emb(sin_inp):
|
51 |
+
"""
|
52 |
+
Gets a base embedding for one dimension with sin and cos intertwined
|
53 |
+
"""
|
54 |
+
emb = th.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
|
55 |
+
return th.flatten(emb, -2, -1)
|
56 |
+
|
57 |
+
|
58 |
+
class PositionalEncoding1D(nn.Module):
|
59 |
+
def __init__(self, channels):
|
60 |
+
"""
|
61 |
+
:param channels: The last dimension of the tensor you want to apply pos emb to.
|
62 |
+
"""
|
63 |
+
super(PositionalEncoding1D, self).__init__()
|
64 |
+
self.org_channels = channels
|
65 |
+
channels = int(np.ceil(channels / 2) * 2)
|
66 |
+
self.channels = channels
|
67 |
+
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
|
68 |
+
self.register_buffer("inv_freq", inv_freq)
|
69 |
+
self.register_buffer("cached_penc", None, persistent=False)
|
70 |
+
|
71 |
+
def forward(self, tensor):
|
72 |
+
"""
|
73 |
+
:param tensor: A 3d tensor of size (batch_size, x, ch)
|
74 |
+
:return: Positional Encoding Matrix of size (batch_size, x, ch)
|
75 |
+
"""
|
76 |
+
if len(tensor.shape) != 3:
|
77 |
+
raise RuntimeError("The input tensor has to be 3d!")
|
78 |
+
|
79 |
+
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
|
80 |
+
return self.cached_penc
|
81 |
+
|
82 |
+
self.cached_penc = None
|
83 |
+
batch_size, x, orig_ch = tensor.shape
|
84 |
+
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
|
85 |
+
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
|
86 |
+
emb_x = get_emb(sin_inp_x)
|
87 |
+
emb = th.zeros((x, self.channels), device=tensor.device, dtype=tensor.dtype)
|
88 |
+
emb[:, : self.channels] = emb_x
|
89 |
+
|
90 |
+
self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1)
|
91 |
+
return self.cached_penc
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
class PositionalEncoding3D(nn.Module):
|
96 |
+
def __init__(self, channels):
|
97 |
+
"""
|
98 |
+
:param channels: The last dimension of the tensor you want to apply pos emb to.
|
99 |
+
"""
|
100 |
+
super(PositionalEncoding3D, self).__init__()
|
101 |
+
self.org_channels = channels
|
102 |
+
channels = int(np.ceil(channels / 6) * 2)
|
103 |
+
if channels % 2:
|
104 |
+
channels += 1
|
105 |
+
self.channels = channels
|
106 |
+
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
|
107 |
+
self.register_buffer("inv_freq", inv_freq)
|
108 |
+
self.register_buffer("cached_penc", None, persistent=False)
|
109 |
+
|
110 |
+
def forward(self, tensor):
|
111 |
+
"""
|
112 |
+
:param tensor: A 5d tensor of size (batch_size, x, y, z, ch)
|
113 |
+
:return: Positional Encoding Matrix of size (batch_size, x, y, z, ch)
|
114 |
+
"""
|
115 |
+
if len(tensor.shape) != 5:
|
116 |
+
raise RuntimeError("The input tensor has to be 5d!")
|
117 |
+
|
118 |
+
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
|
119 |
+
return self.cached_penc
|
120 |
+
|
121 |
+
self.cached_penc = None
|
122 |
+
batch_size, x, y, z, orig_ch = tensor.shape
|
123 |
+
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
|
124 |
+
pos_y = th.arange(y, device=tensor.device, dtype=self.inv_freq.dtype)
|
125 |
+
pos_z = th.arange(z, device=tensor.device, dtype=self.inv_freq.dtype)
|
126 |
+
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
|
127 |
+
sin_inp_y = th.einsum("i,j->ij", pos_y, self.inv_freq)
|
128 |
+
sin_inp_z = th.einsum("i,j->ij", pos_z, self.inv_freq)
|
129 |
+
emb_x = get_emb(sin_inp_x).unsqueeze(1).unsqueeze(1)
|
130 |
+
emb_y = get_emb(sin_inp_y).unsqueeze(1)
|
131 |
+
emb_z = get_emb(sin_inp_z)
|
132 |
+
emb = th.zeros(
|
133 |
+
(x, y, z, self.channels * 3),
|
134 |
+
device=tensor.device,
|
135 |
+
dtype=tensor.dtype,
|
136 |
+
)
|
137 |
+
emb[:, :, :, : self.channels] = emb_x
|
138 |
+
emb[:, :, :, self.channels : 2 * self.channels] = emb_y
|
139 |
+
emb[:, :, :, 2 * self.channels :] = emb_z
|
140 |
+
|
141 |
+
self.cached_penc = emb[None, :, :, :, :orig_ch].repeat(batch_size, 1, 1, 1, 1)
|
142 |
+
return self.cached_penc
|
143 |
+
|
144 |
+
class AnalogyInputProcessor(ModelMixin, ConfigMixin):
|
145 |
+
|
146 |
+
@register_to_config
|
147 |
+
def __init__(self,):
|
148 |
+
super(AnalogyInputProcessor, self).__init__()
|
149 |
+
|
150 |
+
self.dino_transform = transforms.Compose(
|
151 |
+
[
|
152 |
+
transforms.Resize((DINO_SIZE, DINO_SIZE)),
|
153 |
+
transforms.ToTensor(),
|
154 |
+
transforms.Normalize(DINO_MEAN, DINO_STD), # SIGLIP normalization
|
155 |
+
]
|
156 |
+
)
|
157 |
+
|
158 |
+
self.siglip_transform = transforms.Compose(
|
159 |
+
[
|
160 |
+
transforms.Resize((SIGLIP_SIZE, SIGLIP_SIZE)),
|
161 |
+
transforms.ToTensor(),
|
162 |
+
transforms.Normalize(SIGLIP_MEAN, SIGLIP_STD), # SIGLIP normalization
|
163 |
+
]
|
164 |
+
)
|
165 |
+
|
166 |
+
dino_mean = th.tensor(DINO_MEAN).view(1, 3, 1, 1)
|
167 |
+
dino_std = th.tensor(DINO_STD).view(1, 3, 1, 1)
|
168 |
+
siglip_mean = [SIGLIP_MEAN[0],] * 3
|
169 |
+
siglip_std = [SIGLIP_STD[0],] * 3
|
170 |
+
siglip_mean = th.tensor(siglip_mean).view(1, 3, 1, 1)
|
171 |
+
siglip_std = th.tensor(siglip_std).view(1, 3, 1, 1)
|
172 |
+
self.register_buffer("dino_mean", dino_mean)
|
173 |
+
self.register_buffer("dino_std", dino_std)
|
174 |
+
self.register_buffer("siglip_mean", siglip_mean)
|
175 |
+
self.register_buffer("siglip_std", siglip_std)
|
176 |
+
|
177 |
+
def __call__(self, analogy_prompt):
|
178 |
+
# List of tuples of (A, A*, B)
|
179 |
+
img_a_dino = []
|
180 |
+
img_a_siglip = []
|
181 |
+
img_a_star_dino = []
|
182 |
+
img_a_star_siglip = []
|
183 |
+
img_b_dino = []
|
184 |
+
img_b_siglip = []
|
185 |
+
|
186 |
+
for im_set in analogy_prompt:
|
187 |
+
img_a, img_a_star, img_b = im_set
|
188 |
+
img_a_dino.append(self.dino_transform(img_a))
|
189 |
+
img_a_siglip.append(self.siglip_transform(img_a))
|
190 |
+
img_a_star_dino.append(self.dino_transform(img_a_star))
|
191 |
+
img_a_star_siglip.append(self.siglip_transform(img_a_star))
|
192 |
+
img_b_dino.append(self.dino_transform(img_b))
|
193 |
+
img_b_siglip.append(self.siglip_transform(img_b))
|
194 |
+
|
195 |
+
img_a_dino = th.stack(img_a_dino, 0)
|
196 |
+
img_a_siglip = th.stack(img_a_siglip, 0)
|
197 |
+
img_a_star_dino = th.stack(img_a_star_dino, 0)
|
198 |
+
img_a_star_siglip = th.stack(img_a_star_siglip, 0)
|
199 |
+
img_b_dino = th.stack(img_b_dino, 0)
|
200 |
+
img_b_siglip = th.stack(img_b_siglip, 0)
|
201 |
+
|
202 |
+
dino_combined_input = th.stack([img_b_dino, img_a_dino, img_a_star_dino], 0)
|
203 |
+
siglip_combined_input = th.stack([img_b_siglip, img_a_siglip, img_a_star_siglip], 0)
|
204 |
+
|
205 |
+
return dino_combined_input, siglip_combined_input
|
206 |
+
def get_negative(self, dino_in, siglip_in):
|
207 |
+
|
208 |
+
dino_i = ((dino_in * 0 + 0.5) - self.dino_mean) / self.dino_std
|
209 |
+
siglip_i = ((siglip_in * 0 + 0.5) - self.siglip_mean) / self.siglip_std
|
210 |
+
return dino_i, siglip_i
|
211 |
+
|
212 |
+
|
213 |
+
class AnalogyProjector(ModelMixin, ConfigMixin):
|
214 |
+
|
215 |
+
@register_to_config
|
216 |
+
def __init__(self):
|
217 |
+
super(AnalogyProjector, self).__init__()
|
218 |
+
self.projector = DinoSiglipMixer()
|
219 |
+
self.pos_embd_1D = PositionalEncoding1D(OUT_SIZE)
|
220 |
+
self.pos_embd_3D = PositionalEncoding3D(OUT_SIZE)
|
221 |
+
|
222 |
+
|
223 |
+
def forward(self, dino_in, siglip_in, batch_size):
|
224 |
+
|
225 |
+
image_embeddings = self.projector(dino_in, siglip_in)
|
226 |
+
|
227 |
+
image_embeddings = einops.rearrange(image_embeddings, '(k b) t d -> b k t d', b=batch_size)
|
228 |
+
image_embeddings = self.position_embd(image_embeddings)
|
229 |
+
return image_embeddings
|
230 |
+
|
231 |
+
def position_embd(self, image_embeddings, concat=False):
|
232 |
+
canvas_embd = image_embeddings[:, :, 1:, :]
|
233 |
+
batch_size = canvas_embd.shape[0]
|
234 |
+
type_size = canvas_embd.shape[1]
|
235 |
+
xy_size = canvas_embd.shape[2]
|
236 |
+
|
237 |
+
x_size = int(xy_size ** 0.5)
|
238 |
+
|
239 |
+
canvas_embd = canvas_embd.reshape(batch_size, type_size, x_size, x_size, -1)
|
240 |
+
if concat:
|
241 |
+
canvas_embd = th.cat([canvas_embd, self.pos_embd_3D(canvas_embd)], -1)
|
242 |
+
else:
|
243 |
+
canvas_embd = self.pos_embd_3D(canvas_embd) + canvas_embd
|
244 |
+
canvas_embd = canvas_embd.reshape(batch_size, type_size, xy_size, -1)
|
245 |
+
|
246 |
+
class_embd = image_embeddings[:, :, 0, :]
|
247 |
+
if concat:
|
248 |
+
class_embd = th.cat([class_embd, self.pos_embd_1D(class_embd)], -1)
|
249 |
+
else:
|
250 |
+
class_embd = self.pos_embd_1D(class_embd) + class_embd
|
251 |
+
all_embd_list = []
|
252 |
+
for i in range(type_size):
|
253 |
+
all_embd_list.append(class_embd[:, i:i+1])
|
254 |
+
all_embd_list.append(canvas_embd[:, i])
|
255 |
+
image_embeddings = th.cat(all_embd_list, 1)
|
256 |
+
return image_embeddings
|
257 |
+
|
258 |
+
|
259 |
+
class HighLowMixer(th.nn.Module):
|
260 |
+
def __init__(self, in_size=IN_SIZE, out_size=OUT_SIZE):
|
261 |
+
super().__init__()
|
262 |
+
mid_size = (in_size + out_size) // 2
|
263 |
+
|
264 |
+
self.lower_projector = th.nn.Sequential(
|
265 |
+
th.nn.LayerNorm(IN_SIZE//2),
|
266 |
+
th.nn.SiLU()
|
267 |
+
)
|
268 |
+
self.upper_projector = th.nn.Sequential(
|
269 |
+
th.nn.LayerNorm(IN_SIZE//2),
|
270 |
+
th.nn.SiLU()
|
271 |
+
)
|
272 |
+
self.projectors = th.nn.ModuleList([
|
273 |
+
# add layer norm
|
274 |
+
th.nn.Linear(in_size, mid_size),
|
275 |
+
th.nn.SiLU(),
|
276 |
+
th.nn.Linear(mid_size, out_size)
|
277 |
+
])
|
278 |
+
# initialize
|
279 |
+
for proj in self.projectors:
|
280 |
+
if isinstance(proj, th.nn.Linear):
|
281 |
+
th.nn.init.xavier_uniform_(proj.weight)
|
282 |
+
th.nn.init.zeros_(proj.bias)
|
283 |
+
|
284 |
+
def forward(self, lower_in, upper_in, ):
|
285 |
+
# ALso format lower_in
|
286 |
+
lower_in = self.lower_projector(lower_in)
|
287 |
+
upper_in = self.upper_projector(upper_in)
|
288 |
+
x = th.cat([lower_in, upper_in], -1)
|
289 |
+
for proj in self.projectors:
|
290 |
+
x = proj(x)
|
291 |
+
return x
|
292 |
+
|
293 |
+
class DinoSiglipMixer(th.nn.Module):
|
294 |
+
def __init__(self, in_size=OUT_SIZE * 2, out_size=OUT_SIZE):
|
295 |
+
super().__init__()
|
296 |
+
self.dino_projector = HighLowMixer()
|
297 |
+
self.siglip_projector = HighLowMixer()
|
298 |
+
self.projectors = th.nn.Sequential(
|
299 |
+
th.nn.SiLU(),
|
300 |
+
th.nn.Linear(in_size, out_size),
|
301 |
+
)
|
302 |
+
# initialize
|
303 |
+
for proj in self.projectors:
|
304 |
+
if isinstance(proj, th.nn.Linear):
|
305 |
+
th.nn.init.xavier_uniform_(proj.weight)
|
306 |
+
th.nn.init.zeros_(proj.bias)
|
307 |
+
|
308 |
+
|
309 |
+
def forward(self, dino_in, siglip_in):
|
310 |
+
# ALso format lower_in
|
311 |
+
lower, upper = th.chunk(dino_in, 2, -1)
|
312 |
+
dino_out = self.dino_projector(lower, upper)
|
313 |
+
lower, upper = th.chunk(siglip_in, 2, -1)
|
314 |
+
siglip_out = self.siglip_projector(lower, upper)
|
315 |
+
x = th.cat([dino_out, siglip_out], -1)
|
316 |
+
for proj in self.projectors:
|
317 |
+
x = proj(x)
|
318 |
+
return x
|
319 |
+
|
320 |
+
class AnalogyEncoder(ModelMixin, ConfigMixin):
|
321 |
+
@register_to_config
|
322 |
+
def __init__(self, load_pretrained=False,
|
323 |
+
dino_config_dict=None, siglip_config_dict=None):
|
324 |
+
super().__init__()
|
325 |
+
if load_pretrained:
|
326 |
+
image_encoder_dino = AutoModel.from_pretrained('facebook/dinov2-large', torch_dtype=th.float16)
|
327 |
+
image_encoder_siglip = SiglipVisionModel.from_pretrained("google/siglip-large-patch16-256", torch_dtype=th.float16, attn_implementation="sdpa")
|
328 |
+
else:
|
329 |
+
image_encoder_dino = AutoModel.from_config(Dinov2Config.from_dict(dino_config_dict))
|
330 |
+
image_encoder_siglip = AutoModel.from_config(SiglipVisionConfig.from_dict(siglip_config_dict))
|
331 |
+
|
332 |
+
image_encoder_dino.requires_grad_(False)
|
333 |
+
image_encoder_dino = image_encoder_dino.to(memory_format=th.channels_last)
|
334 |
+
|
335 |
+
image_encoder_siglip.requires_grad_(False)
|
336 |
+
image_encoder_siglip = image_encoder_siglip.to(memory_format=th.channels_last)
|
337 |
+
self.image_encoder_dino = image_encoder_dino
|
338 |
+
self.image_encoder_siglip = image_encoder_siglip
|
339 |
+
|
340 |
+
|
341 |
+
def dino_normalization(self, encoder_output):
|
342 |
+
embeds = encoder_output.last_hidden_state
|
343 |
+
embeds_pooled = embeds[:, 0:1]
|
344 |
+
embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
|
345 |
+
return embeds
|
346 |
+
|
347 |
+
def siglip_normalization(self, encoder_output):
|
348 |
+
embeds = th.cat ([encoder_output.pooler_output[:, None, :], encoder_output.last_hidden_state], dim=1)
|
349 |
+
embeds_pooled = embeds[:, 0:1]
|
350 |
+
embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
|
351 |
+
return embeds
|
352 |
+
|
353 |
+
def forward(self, dino_in, siglip_in):
|
354 |
+
|
355 |
+
x_1 = self.image_encoder_dino(dino_in, output_hidden_states=True)
|
356 |
+
x_1_first = x_1.hidden_states[0]
|
357 |
+
x_1 = self.dino_normalization(x_1)
|
358 |
+
x_2 = self.image_encoder_siglip(siglip_in, output_hidden_states=True)
|
359 |
+
x_2_first = x_2.hidden_states[0]
|
360 |
+
x_2_first_pool = th.mean(x_2_first, dim=1, keepdim=True)
|
361 |
+
x_2_first = th.cat([x_2_first_pool, x_2_first], 1)
|
362 |
+
x_2 = self.siglip_normalization(x_2)
|
363 |
+
dino_embd = th.cat([x_1, x_1_first], -1)
|
364 |
+
siglip_embd = th.cat([x_2, x_2_first], -1)
|
365 |
+
return dino_embd, siglip_embd
|
366 |
+
|
367 |
+
|
368 |
+
class PatternAnalogyTrifuser(DiffusionPipeline):
|
369 |
+
r"""
|
370 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
371 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
372 |
+
"""
|
373 |
+
|
374 |
+
model_cpu_offload_seq = "bert->unet->vqvae"
|
375 |
+
|
376 |
+
analogy_input_processor: AnalogyInputProcessor
|
377 |
+
analogy_encoder: AnalogyEncoder
|
378 |
+
analogy_projector: AnalogyProjector
|
379 |
+
unet: UNet2DConditionModel
|
380 |
+
vae: AutoencoderKL
|
381 |
+
scheduler: KarrasDiffusionSchedulers
|
382 |
+
|
383 |
+
def __init__(self,
|
384 |
+
analogy_input_processor: AnalogyInputProcessor,
|
385 |
+
analogy_projector: AnalogyProjector,
|
386 |
+
analogy_encoder: AnalogyEncoder,
|
387 |
+
unet: UNet2DConditionModel,
|
388 |
+
vae: AutoencoderKL,
|
389 |
+
scheduler: KarrasDiffusionSchedulers,):
|
390 |
+
|
391 |
+
|
392 |
+
super().__init__()
|
393 |
+
self.register_modules(
|
394 |
+
analogy_input_processor=analogy_input_processor,
|
395 |
+
analogy_encoder=analogy_encoder,
|
396 |
+
analogy_projector=analogy_projector,
|
397 |
+
unet=unet,
|
398 |
+
vae=vae,
|
399 |
+
scheduler=scheduler,
|
400 |
+
)
|
401 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
402 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
403 |
+
|
404 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline.check_inputs
|
405 |
+
def check_inputs(self, analogy_prompt, negative_analogy_prompt, height, width, callback_steps):
|
406 |
+
if (
|
407 |
+
not isinstance(analogy_prompt, th.Tensor)
|
408 |
+
and not isinstance(analogy_prompt, PIL.Image.Image)
|
409 |
+
and not isinstance(analogy_prompt, list)
|
410 |
+
):
|
411 |
+
raise ValueError(
|
412 |
+
"`analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
413 |
+
f" {type(analogy_prompt)}"
|
414 |
+
)
|
415 |
+
if not negative_analogy_prompt is None:
|
416 |
+
if (
|
417 |
+
not isinstance(negative_analogy_prompt, th.Tensor)
|
418 |
+
and not isinstance(negative_analogy_prompt, PIL.Image.Image)
|
419 |
+
and not isinstance(negative_analogy_prompt, list)
|
420 |
+
):
|
421 |
+
raise ValueError(
|
422 |
+
"`negative_analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
423 |
+
f" {type(negative_analogy_prompt)}"
|
424 |
+
)
|
425 |
+
|
426 |
+
|
427 |
+
if height % 8 != 0 or width % 8 != 0:
|
428 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
429 |
+
|
430 |
+
if (callback_steps is None) or (
|
431 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
432 |
+
):
|
433 |
+
raise ValueError(
|
434 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
435 |
+
f" {type(callback_steps)}."
|
436 |
+
)
|
437 |
+
|
438 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
439 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
440 |
+
shape = (
|
441 |
+
batch_size,
|
442 |
+
num_channels_latents,
|
443 |
+
int(height) // self.vae_scale_factor,
|
444 |
+
int(width) // self.vae_scale_factor,
|
445 |
+
)
|
446 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
447 |
+
raise ValueError(
|
448 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
449 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
450 |
+
)
|
451 |
+
|
452 |
+
if latents is None:
|
453 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
454 |
+
else:
|
455 |
+
latents = latents.to(device)
|
456 |
+
|
457 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
458 |
+
latents = latents * self.scheduler.init_noise_sigma
|
459 |
+
return latents
|
460 |
+
|
461 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
462 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
463 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
464 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
465 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
466 |
+
# and should be between [0, 1]
|
467 |
+
|
468 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
469 |
+
extra_step_kwargs = {}
|
470 |
+
if accepts_eta:
|
471 |
+
extra_step_kwargs["eta"] = eta
|
472 |
+
|
473 |
+
# check if the scheduler accepts generator
|
474 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
475 |
+
if accepts_generator:
|
476 |
+
extra_step_kwargs["generator"] = generator
|
477 |
+
return extra_step_kwargs
|
478 |
+
|
479 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
480 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
481 |
+
shape = (
|
482 |
+
batch_size,
|
483 |
+
num_channels_latents,
|
484 |
+
int(height) // self.vae_scale_factor,
|
485 |
+
int(width) // self.vae_scale_factor,
|
486 |
+
)
|
487 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
488 |
+
raise ValueError(
|
489 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
490 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
491 |
+
)
|
492 |
+
|
493 |
+
if latents is None:
|
494 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
495 |
+
else:
|
496 |
+
latents = latents.to(device)
|
497 |
+
|
498 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
499 |
+
latents = latents * self.scheduler.init_noise_sigma
|
500 |
+
return latents
|
501 |
+
|
502 |
+
def _encode_prompt(self, analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
503 |
+
r"""
|
504 |
+
Encodes the prompt into text encoder hidden states.
|
505 |
+
|
506 |
+
Args:
|
507 |
+
prompt (`str` or `List[str]`):
|
508 |
+
prompt to be encoded
|
509 |
+
device: (`torch.device`):
|
510 |
+
torch device
|
511 |
+
num_images_per_prompt (`int`):
|
512 |
+
number of images that should be generated per prompt
|
513 |
+
do_classifier_free_guidance (`bool`):
|
514 |
+
whether to use classifier free guidance or not
|
515 |
+
negative_prompt (`str` or `List[str]`):
|
516 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
517 |
+
if `guidance_scale` is less than `1`).
|
518 |
+
"""
|
519 |
+
weight_dtype = self.unet.dtype
|
520 |
+
dino_input, siglip_input = self.analogy_input_processor(analogy_prompt)
|
521 |
+
dino_input = dino_input.to(device=device).to(dtype=weight_dtype)
|
522 |
+
siglip_input = siglip_input.to(device=device).to(dtype=weight_dtype)
|
523 |
+
batch_size = dino_input.shape[1]
|
524 |
+
dino_input_reshaped = einops.rearrange(dino_input, "k b c h w -> (k b) c h w")
|
525 |
+
siglip_input_reshaped = einops.rearrange(siglip_input, "k b c h w -> (k b) c h w")
|
526 |
+
dino_enc, siglip_enc = self.analogy_encoder(dino_input_reshaped, siglip_input_reshaped)
|
527 |
+
image_embeddings = self.analogy_projector(dino_enc, siglip_enc, batch_size)
|
528 |
+
# Check size here.
|
529 |
+
|
530 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
531 |
+
image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)
|
532 |
+
# get unconditional embeddings for classifier free guidance
|
533 |
+
if do_classifier_free_guidance:
|
534 |
+
uncond_images: List[str]
|
535 |
+
if negative_prompt is None:
|
536 |
+
uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size
|
537 |
+
elif type(negative_prompt) is not type(analogy_prompt):
|
538 |
+
raise TypeError(
|
539 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(analogy_prompt)} !="
|
540 |
+
f" {type(negative_prompt)}."
|
541 |
+
)
|
542 |
+
elif isinstance(negative_prompt, PIL.Image.Image):
|
543 |
+
uncond_images = [negative_prompt]
|
544 |
+
elif batch_size != len(negative_prompt):
|
545 |
+
raise ValueError(
|
546 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
547 |
+
f" {analogy_prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
548 |
+
" the batch size of `prompt`."
|
549 |
+
)
|
550 |
+
else:
|
551 |
+
uncond_images = negative_prompt
|
552 |
+
dino_neg, siglip_neg = self.analogy_input_processor.get_negative(dino_input, siglip_input)
|
553 |
+
|
554 |
+
dino_neg = dino_neg.to(device=device).to(dtype=weight_dtype)
|
555 |
+
siglip_neg = siglip_neg.to(device=device).to(dtype=weight_dtype)
|
556 |
+
dino_neg_reshaped = einops.rearrange(dino_neg, "k b c h w -> (k b) c h w")
|
557 |
+
siglip_neg_reshaped = einops.rearrange(siglip_neg, "k b c h w -> (k b) c h w")
|
558 |
+
dino_neg_enc, siglip_neg_enc = self.analogy_encoder(dino_neg_reshaped, siglip_neg_reshaped)
|
559 |
+
negative_prompt_embeds = self.analogy_projector(dino_neg_enc, siglip_neg_enc, batch_size)
|
560 |
+
|
561 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1, 1)
|
562 |
+
image_embeddings = th.cat([negative_prompt_embeds, image_embeddings])
|
563 |
+
|
564 |
+
|
565 |
+
return image_embeddings
|
566 |
+
|
567 |
+
@th.no_grad()
|
568 |
+
def __call__(
|
569 |
+
self,
|
570 |
+
analogy_prompt: Union[str, List[str]] = None,
|
571 |
+
num_inference_steps: int = 50,
|
572 |
+
guidance_scale: float = 7.5,
|
573 |
+
height: Optional[int] = None,
|
574 |
+
width: Optional[int] = None,
|
575 |
+
negative_analogy_prompt: Optional[Union[str, List[str]]] = None,
|
576 |
+
num_images_per_prompt: Optional[int] = 1,
|
577 |
+
eta: float = 0.0,
|
578 |
+
generator: Optional[Union[th.Generator, List[th.Generator]]] = None,
|
579 |
+
latents: Optional[th.FloatTensor] = None,
|
580 |
+
output_type: Optional[str] = "pil",
|
581 |
+
return_dict: bool = True,
|
582 |
+
callback: Optional[Callable[[int, int, th.Tensor], None]] = None,
|
583 |
+
callback_steps: int = 1,
|
584 |
+
start_step: int = 0,
|
585 |
+
):
|
586 |
+
r"""
|
587 |
+
The call function to the pipeline for generation.
|
588 |
+
|
589 |
+
Args:
|
590 |
+
image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`):
|
591 |
+
The image prompt or prompts to guide the image generation.
|
592 |
+
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
|
593 |
+
The height in pixels of the generated image.
|
594 |
+
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
|
595 |
+
The width in pixels of the generated image.
|
596 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
597 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
598 |
+
expense of slower inference.
|
599 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
600 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
601 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
602 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
603 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
604 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
605 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
606 |
+
The number of images to generate per prompt.
|
607 |
+
eta (`float`, *optional*, defaults to 0.0):
|
608 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
609 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
610 |
+
generator (`torch.Generator`, *optional*):
|
611 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
612 |
+
generation deterministic.
|
613 |
+
latents (`torch.Tensor`, *optional*):
|
614 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
615 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
616 |
+
tensor is generated by sampling using the supplied random `generator`.
|
617 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
618 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
619 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
620 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
621 |
+
plain tuple.
|
622 |
+
callback (`Callable`, *optional*):
|
623 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
624 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
625 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
626 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
627 |
+
every step.
|
628 |
+
|
629 |
+
Examples:
|
630 |
+
|
631 |
+
```py
|
632 |
+
>>> from diffusers import VersatileDiffusionImageVariationPipeline
|
633 |
+
>>> import torch
|
634 |
+
>>> import requests
|
635 |
+
>>> from io import BytesIO
|
636 |
+
>>> from PIL import Image
|
637 |
+
|
638 |
+
>>> # let's download an initial image
|
639 |
+
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
|
640 |
+
|
641 |
+
>>> response = requests.get(url)
|
642 |
+
>>> image = Image.open(BytesIO(response.content)).convert("RGB")
|
643 |
+
|
644 |
+
>>> pipe = VersatileDiffusionImageVariationPipeline.from_pretrained(
|
645 |
+
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16
|
646 |
+
... )
|
647 |
+
>>> pipe = pipe.to("cuda")
|
648 |
+
|
649 |
+
>>> generator = torch.Generator(device="cuda").manual_seed(0)
|
650 |
+
>>> image = pipe(image, generator=generator).images[0]
|
651 |
+
>>> image.save("./car_variation.png")
|
652 |
+
```
|
653 |
+
|
654 |
+
Returns:
|
655 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
656 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
657 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images.
|
658 |
+
"""
|
659 |
+
|
660 |
+
# 1. Check inputs. Raise error if not correct
|
661 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
662 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
663 |
+
|
664 |
+
# 1. Check inputs. Raise error if not correct
|
665 |
+
self.check_inputs(analogy_prompt, negative_analogy_prompt, height, width, callback_steps)
|
666 |
+
|
667 |
+
# 2. Define call parameters
|
668 |
+
if isinstance(analogy_prompt, list):
|
669 |
+
batch_size = len(analogy_prompt)
|
670 |
+
elif isinstance(analogy_prompt, tuple):
|
671 |
+
batch_size = 1
|
672 |
+
else:
|
673 |
+
raise ValueError(
|
674 |
+
f"`analogy_prompt` has to be a list of images or a tuple of images but is of type {type(analogy_prompt)}"
|
675 |
+
)
|
676 |
+
device = self._execution_device
|
677 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
678 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
679 |
+
# corresponds to doing no classifier free guidance.
|
680 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
681 |
+
|
682 |
+
# 3. Encode input prompt
|
683 |
+
analogy_embeddings = self._encode_prompt(
|
684 |
+
analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_analogy_prompt
|
685 |
+
)
|
686 |
+
|
687 |
+
# 4. Prepare timesteps
|
688 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
689 |
+
|
690 |
+
timesteps = self.scheduler.timesteps
|
691 |
+
# Now this should be from start step onwards
|
692 |
+
timesteps = timesteps[start_step:]
|
693 |
+
# 5. Prepare latent variables
|
694 |
+
num_channels_latents = self.unet.config.in_channels
|
695 |
+
latents = self.prepare_latents(
|
696 |
+
batch_size * num_images_per_prompt,
|
697 |
+
num_channels_latents,
|
698 |
+
height,
|
699 |
+
width,
|
700 |
+
analogy_embeddings.dtype,
|
701 |
+
device,
|
702 |
+
generator,
|
703 |
+
latents,
|
704 |
+
)
|
705 |
+
|
706 |
+
# 6. Prepare extra step kwargs.
|
707 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
708 |
+
|
709 |
+
# 7. Denoising loop
|
710 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
711 |
+
# expand the latents if we are doing classifier free guidance
|
712 |
+
latent_model_input = th.cat([latents] * 2) if do_classifier_free_guidance else latents
|
713 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
714 |
+
|
715 |
+
# predict the noise residual
|
716 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=analogy_embeddings).sample
|
717 |
+
|
718 |
+
# perform guidance
|
719 |
+
if do_classifier_free_guidance:
|
720 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
721 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
722 |
+
|
723 |
+
# compute the previous noisy sample x_t -> x_t-1
|
724 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
725 |
+
|
726 |
+
# call the callback, if provided
|
727 |
+
if callback is not None and i % callback_steps == 0:
|
728 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
729 |
+
callback(step_idx, t, latents)
|
730 |
+
|
731 |
+
if not output_type == "latent":
|
732 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
733 |
+
else:
|
734 |
+
image = latents
|
735 |
+
|
736 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
737 |
+
|
738 |
+
if not return_dict:
|
739 |
+
return (image,)
|
740 |
+
|
741 |
+
return ImagePipelineOutput(images=image)
|