Create pipeline.py
Browse files- analogy_encoder/pipeline.py +741 -0
analogy_encoder/pipeline.py
ADDED
|
@@ -0,0 +1,741 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
ADOBE CONFIDENTIAL
|
| 3 |
+
Copyright 2024 Adobe
|
| 4 |
+
All Rights Reserved.
|
| 5 |
+
NOTICE: All information contained herein is, and remains
|
| 6 |
+
the property of Adobe and its suppliers, if any. The intellectual
|
| 7 |
+
and technical concepts contained herein are proprietary to Adobe
|
| 8 |
+
and its suppliers and are protected by all applicable intellectual
|
| 9 |
+
property laws, including trade secret and copyright laws.
|
| 10 |
+
Dissemination of this information or reproduction of this material
|
| 11 |
+
is strictly forbidden unless prior written permission is obtained
|
| 12 |
+
from Adobe.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
from typing import Callable, List, Optional, Union
|
| 16 |
+
import inspect
|
| 17 |
+
import einops
|
| 18 |
+
import PIL.Image
|
| 19 |
+
import numpy as np
|
| 20 |
+
import torch as th
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
from torchvision import transforms
|
| 23 |
+
|
| 24 |
+
from diffusers import ModelMixin
|
| 25 |
+
from transformers import AutoModel, AutoConfig, SiglipVisionConfig, Dinov2Config, Dinov2Model
|
| 26 |
+
from transformers import SiglipVisionModel
|
| 27 |
+
from diffusers import DiffusionPipeline
|
| 28 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 29 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
| 30 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 31 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 32 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
| 33 |
+
|
| 34 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 35 |
+
# REf: https://github.com/tatp22/multidim-positional-encoding/tree/master
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
OUT_SIZE = 768
|
| 39 |
+
IN_SIZE = 2048
|
| 40 |
+
|
| 41 |
+
DINO_SIZE = 224
|
| 42 |
+
DINO_MEAN = [0.485, 0.456, 0.406]
|
| 43 |
+
DINO_STD = [0.229, 0.224, 0.225]
|
| 44 |
+
|
| 45 |
+
SIGLIP_SIZE = 256
|
| 46 |
+
SIGLIP_MEAN = [0.5]
|
| 47 |
+
SIGLIP_STD = [0.5]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def get_emb(sin_inp):
|
| 51 |
+
"""
|
| 52 |
+
Gets a base embedding for one dimension with sin and cos intertwined
|
| 53 |
+
"""
|
| 54 |
+
emb = th.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
|
| 55 |
+
return th.flatten(emb, -2, -1)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class PositionalEncoding1D(nn.Module):
|
| 59 |
+
def __init__(self, channels):
|
| 60 |
+
"""
|
| 61 |
+
:param channels: The last dimension of the tensor you want to apply pos emb to.
|
| 62 |
+
"""
|
| 63 |
+
super(PositionalEncoding1D, self).__init__()
|
| 64 |
+
self.org_channels = channels
|
| 65 |
+
channels = int(np.ceil(channels / 2) * 2)
|
| 66 |
+
self.channels = channels
|
| 67 |
+
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
|
| 68 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 69 |
+
self.register_buffer("cached_penc", None, persistent=False)
|
| 70 |
+
|
| 71 |
+
def forward(self, tensor):
|
| 72 |
+
"""
|
| 73 |
+
:param tensor: A 3d tensor of size (batch_size, x, ch)
|
| 74 |
+
:return: Positional Encoding Matrix of size (batch_size, x, ch)
|
| 75 |
+
"""
|
| 76 |
+
if len(tensor.shape) != 3:
|
| 77 |
+
raise RuntimeError("The input tensor has to be 3d!")
|
| 78 |
+
|
| 79 |
+
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
|
| 80 |
+
return self.cached_penc
|
| 81 |
+
|
| 82 |
+
self.cached_penc = None
|
| 83 |
+
batch_size, x, orig_ch = tensor.shape
|
| 84 |
+
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
|
| 85 |
+
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
|
| 86 |
+
emb_x = get_emb(sin_inp_x)
|
| 87 |
+
emb = th.zeros((x, self.channels), device=tensor.device, dtype=tensor.dtype)
|
| 88 |
+
emb[:, : self.channels] = emb_x
|
| 89 |
+
|
| 90 |
+
self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1)
|
| 91 |
+
return self.cached_penc
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class PositionalEncoding3D(nn.Module):
|
| 96 |
+
def __init__(self, channels):
|
| 97 |
+
"""
|
| 98 |
+
:param channels: The last dimension of the tensor you want to apply pos emb to.
|
| 99 |
+
"""
|
| 100 |
+
super(PositionalEncoding3D, self).__init__()
|
| 101 |
+
self.org_channels = channels
|
| 102 |
+
channels = int(np.ceil(channels / 6) * 2)
|
| 103 |
+
if channels % 2:
|
| 104 |
+
channels += 1
|
| 105 |
+
self.channels = channels
|
| 106 |
+
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
|
| 107 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 108 |
+
self.register_buffer("cached_penc", None, persistent=False)
|
| 109 |
+
|
| 110 |
+
def forward(self, tensor):
|
| 111 |
+
"""
|
| 112 |
+
:param tensor: A 5d tensor of size (batch_size, x, y, z, ch)
|
| 113 |
+
:return: Positional Encoding Matrix of size (batch_size, x, y, z, ch)
|
| 114 |
+
"""
|
| 115 |
+
if len(tensor.shape) != 5:
|
| 116 |
+
raise RuntimeError("The input tensor has to be 5d!")
|
| 117 |
+
|
| 118 |
+
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
|
| 119 |
+
return self.cached_penc
|
| 120 |
+
|
| 121 |
+
self.cached_penc = None
|
| 122 |
+
batch_size, x, y, z, orig_ch = tensor.shape
|
| 123 |
+
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
|
| 124 |
+
pos_y = th.arange(y, device=tensor.device, dtype=self.inv_freq.dtype)
|
| 125 |
+
pos_z = th.arange(z, device=tensor.device, dtype=self.inv_freq.dtype)
|
| 126 |
+
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
|
| 127 |
+
sin_inp_y = th.einsum("i,j->ij", pos_y, self.inv_freq)
|
| 128 |
+
sin_inp_z = th.einsum("i,j->ij", pos_z, self.inv_freq)
|
| 129 |
+
emb_x = get_emb(sin_inp_x).unsqueeze(1).unsqueeze(1)
|
| 130 |
+
emb_y = get_emb(sin_inp_y).unsqueeze(1)
|
| 131 |
+
emb_z = get_emb(sin_inp_z)
|
| 132 |
+
emb = th.zeros(
|
| 133 |
+
(x, y, z, self.channels * 3),
|
| 134 |
+
device=tensor.device,
|
| 135 |
+
dtype=tensor.dtype,
|
| 136 |
+
)
|
| 137 |
+
emb[:, :, :, : self.channels] = emb_x
|
| 138 |
+
emb[:, :, :, self.channels : 2 * self.channels] = emb_y
|
| 139 |
+
emb[:, :, :, 2 * self.channels :] = emb_z
|
| 140 |
+
|
| 141 |
+
self.cached_penc = emb[None, :, :, :, :orig_ch].repeat(batch_size, 1, 1, 1, 1)
|
| 142 |
+
return self.cached_penc
|
| 143 |
+
|
| 144 |
+
class AnalogyInputProcessor(ModelMixin, ConfigMixin):
|
| 145 |
+
|
| 146 |
+
@register_to_config
|
| 147 |
+
def __init__(self,):
|
| 148 |
+
super(AnalogyInputProcessor, self).__init__()
|
| 149 |
+
|
| 150 |
+
self.dino_transform = transforms.Compose(
|
| 151 |
+
[
|
| 152 |
+
transforms.Resize((DINO_SIZE, DINO_SIZE)),
|
| 153 |
+
transforms.ToTensor(),
|
| 154 |
+
transforms.Normalize(DINO_MEAN, DINO_STD), # SIGLIP normalization
|
| 155 |
+
]
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
self.siglip_transform = transforms.Compose(
|
| 159 |
+
[
|
| 160 |
+
transforms.Resize((SIGLIP_SIZE, SIGLIP_SIZE)),
|
| 161 |
+
transforms.ToTensor(),
|
| 162 |
+
transforms.Normalize(SIGLIP_MEAN, SIGLIP_STD), # SIGLIP normalization
|
| 163 |
+
]
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
dino_mean = th.tensor(DINO_MEAN).view(1, 3, 1, 1)
|
| 167 |
+
dino_std = th.tensor(DINO_STD).view(1, 3, 1, 1)
|
| 168 |
+
siglip_mean = [SIGLIP_MEAN[0],] * 3
|
| 169 |
+
siglip_std = [SIGLIP_STD[0],] * 3
|
| 170 |
+
siglip_mean = th.tensor(siglip_mean).view(1, 3, 1, 1)
|
| 171 |
+
siglip_std = th.tensor(siglip_std).view(1, 3, 1, 1)
|
| 172 |
+
self.register_buffer("dino_mean", dino_mean)
|
| 173 |
+
self.register_buffer("dino_std", dino_std)
|
| 174 |
+
self.register_buffer("siglip_mean", siglip_mean)
|
| 175 |
+
self.register_buffer("siglip_std", siglip_std)
|
| 176 |
+
|
| 177 |
+
def __call__(self, analogy_prompt):
|
| 178 |
+
# List of tuples of (A, A*, B)
|
| 179 |
+
img_a_dino = []
|
| 180 |
+
img_a_siglip = []
|
| 181 |
+
img_a_star_dino = []
|
| 182 |
+
img_a_star_siglip = []
|
| 183 |
+
img_b_dino = []
|
| 184 |
+
img_b_siglip = []
|
| 185 |
+
|
| 186 |
+
for im_set in analogy_prompt:
|
| 187 |
+
img_a, img_a_star, img_b = im_set
|
| 188 |
+
img_a_dino.append(self.dino_transform(img_a))
|
| 189 |
+
img_a_siglip.append(self.siglip_transform(img_a))
|
| 190 |
+
img_a_star_dino.append(self.dino_transform(img_a_star))
|
| 191 |
+
img_a_star_siglip.append(self.siglip_transform(img_a_star))
|
| 192 |
+
img_b_dino.append(self.dino_transform(img_b))
|
| 193 |
+
img_b_siglip.append(self.siglip_transform(img_b))
|
| 194 |
+
|
| 195 |
+
img_a_dino = th.stack(img_a_dino, 0)
|
| 196 |
+
img_a_siglip = th.stack(img_a_siglip, 0)
|
| 197 |
+
img_a_star_dino = th.stack(img_a_star_dino, 0)
|
| 198 |
+
img_a_star_siglip = th.stack(img_a_star_siglip, 0)
|
| 199 |
+
img_b_dino = th.stack(img_b_dino, 0)
|
| 200 |
+
img_b_siglip = th.stack(img_b_siglip, 0)
|
| 201 |
+
|
| 202 |
+
dino_combined_input = th.stack([img_b_dino, img_a_dino, img_a_star_dino], 0)
|
| 203 |
+
siglip_combined_input = th.stack([img_b_siglip, img_a_siglip, img_a_star_siglip], 0)
|
| 204 |
+
|
| 205 |
+
return dino_combined_input, siglip_combined_input
|
| 206 |
+
def get_negative(self, dino_in, siglip_in):
|
| 207 |
+
|
| 208 |
+
dino_i = ((dino_in * 0 + 0.5) - self.dino_mean) / self.dino_std
|
| 209 |
+
siglip_i = ((siglip_in * 0 + 0.5) - self.siglip_mean) / self.siglip_std
|
| 210 |
+
return dino_i, siglip_i
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class AnalogyProjector(ModelMixin, ConfigMixin):
|
| 214 |
+
|
| 215 |
+
@register_to_config
|
| 216 |
+
def __init__(self):
|
| 217 |
+
super(AnalogyProjector, self).__init__()
|
| 218 |
+
self.projector = DinoSiglipMixer()
|
| 219 |
+
self.pos_embd_1D = PositionalEncoding1D(OUT_SIZE)
|
| 220 |
+
self.pos_embd_3D = PositionalEncoding3D(OUT_SIZE)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def forward(self, dino_in, siglip_in, batch_size):
|
| 224 |
+
|
| 225 |
+
image_embeddings = self.projector(dino_in, siglip_in)
|
| 226 |
+
|
| 227 |
+
image_embeddings = einops.rearrange(image_embeddings, '(k b) t d -> b k t d', b=batch_size)
|
| 228 |
+
image_embeddings = self.position_embd(image_embeddings)
|
| 229 |
+
return image_embeddings
|
| 230 |
+
|
| 231 |
+
def position_embd(self, image_embeddings, concat=False):
|
| 232 |
+
canvas_embd = image_embeddings[:, :, 1:, :]
|
| 233 |
+
batch_size = canvas_embd.shape[0]
|
| 234 |
+
type_size = canvas_embd.shape[1]
|
| 235 |
+
xy_size = canvas_embd.shape[2]
|
| 236 |
+
|
| 237 |
+
x_size = int(xy_size ** 0.5)
|
| 238 |
+
|
| 239 |
+
canvas_embd = canvas_embd.reshape(batch_size, type_size, x_size, x_size, -1)
|
| 240 |
+
if concat:
|
| 241 |
+
canvas_embd = th.cat([canvas_embd, self.pos_embd_3D(canvas_embd)], -1)
|
| 242 |
+
else:
|
| 243 |
+
canvas_embd = self.pos_embd_3D(canvas_embd) + canvas_embd
|
| 244 |
+
canvas_embd = canvas_embd.reshape(batch_size, type_size, xy_size, -1)
|
| 245 |
+
|
| 246 |
+
class_embd = image_embeddings[:, :, 0, :]
|
| 247 |
+
if concat:
|
| 248 |
+
class_embd = th.cat([class_embd, self.pos_embd_1D(class_embd)], -1)
|
| 249 |
+
else:
|
| 250 |
+
class_embd = self.pos_embd_1D(class_embd) + class_embd
|
| 251 |
+
all_embd_list = []
|
| 252 |
+
for i in range(type_size):
|
| 253 |
+
all_embd_list.append(class_embd[:, i:i+1])
|
| 254 |
+
all_embd_list.append(canvas_embd[:, i])
|
| 255 |
+
image_embeddings = th.cat(all_embd_list, 1)
|
| 256 |
+
return image_embeddings
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
class HighLowMixer(th.nn.Module):
|
| 260 |
+
def __init__(self, in_size=IN_SIZE, out_size=OUT_SIZE):
|
| 261 |
+
super().__init__()
|
| 262 |
+
mid_size = (in_size + out_size) // 2
|
| 263 |
+
|
| 264 |
+
self.lower_projector = th.nn.Sequential(
|
| 265 |
+
th.nn.LayerNorm(IN_SIZE//2),
|
| 266 |
+
th.nn.SiLU()
|
| 267 |
+
)
|
| 268 |
+
self.upper_projector = th.nn.Sequential(
|
| 269 |
+
th.nn.LayerNorm(IN_SIZE//2),
|
| 270 |
+
th.nn.SiLU()
|
| 271 |
+
)
|
| 272 |
+
self.projectors = th.nn.ModuleList([
|
| 273 |
+
# add layer norm
|
| 274 |
+
th.nn.Linear(in_size, mid_size),
|
| 275 |
+
th.nn.SiLU(),
|
| 276 |
+
th.nn.Linear(mid_size, out_size)
|
| 277 |
+
])
|
| 278 |
+
# initialize
|
| 279 |
+
for proj in self.projectors:
|
| 280 |
+
if isinstance(proj, th.nn.Linear):
|
| 281 |
+
th.nn.init.xavier_uniform_(proj.weight)
|
| 282 |
+
th.nn.init.zeros_(proj.bias)
|
| 283 |
+
|
| 284 |
+
def forward(self, lower_in, upper_in, ):
|
| 285 |
+
# ALso format lower_in
|
| 286 |
+
lower_in = self.lower_projector(lower_in)
|
| 287 |
+
upper_in = self.upper_projector(upper_in)
|
| 288 |
+
x = th.cat([lower_in, upper_in], -1)
|
| 289 |
+
for proj in self.projectors:
|
| 290 |
+
x = proj(x)
|
| 291 |
+
return x
|
| 292 |
+
|
| 293 |
+
class DinoSiglipMixer(th.nn.Module):
|
| 294 |
+
def __init__(self, in_size=OUT_SIZE * 2, out_size=OUT_SIZE):
|
| 295 |
+
super().__init__()
|
| 296 |
+
self.dino_projector = HighLowMixer()
|
| 297 |
+
self.siglip_projector = HighLowMixer()
|
| 298 |
+
self.projectors = th.nn.Sequential(
|
| 299 |
+
th.nn.SiLU(),
|
| 300 |
+
th.nn.Linear(in_size, out_size),
|
| 301 |
+
)
|
| 302 |
+
# initialize
|
| 303 |
+
for proj in self.projectors:
|
| 304 |
+
if isinstance(proj, th.nn.Linear):
|
| 305 |
+
th.nn.init.xavier_uniform_(proj.weight)
|
| 306 |
+
th.nn.init.zeros_(proj.bias)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
def forward(self, dino_in, siglip_in):
|
| 310 |
+
# ALso format lower_in
|
| 311 |
+
lower, upper = th.chunk(dino_in, 2, -1)
|
| 312 |
+
dino_out = self.dino_projector(lower, upper)
|
| 313 |
+
lower, upper = th.chunk(siglip_in, 2, -1)
|
| 314 |
+
siglip_out = self.siglip_projector(lower, upper)
|
| 315 |
+
x = th.cat([dino_out, siglip_out], -1)
|
| 316 |
+
for proj in self.projectors:
|
| 317 |
+
x = proj(x)
|
| 318 |
+
return x
|
| 319 |
+
|
| 320 |
+
class AnalogyEncoder(ModelMixin, ConfigMixin):
|
| 321 |
+
@register_to_config
|
| 322 |
+
def __init__(self, load_pretrained=False,
|
| 323 |
+
dino_config_dict=None, siglip_config_dict=None):
|
| 324 |
+
super().__init__()
|
| 325 |
+
if load_pretrained:
|
| 326 |
+
image_encoder_dino = AutoModel.from_pretrained('facebook/dinov2-large', torch_dtype=th.float16)
|
| 327 |
+
image_encoder_siglip = SiglipVisionModel.from_pretrained("google/siglip-large-patch16-256", torch_dtype=th.float16, attn_implementation="sdpa")
|
| 328 |
+
else:
|
| 329 |
+
image_encoder_dino = AutoModel.from_config(Dinov2Config.from_dict(dino_config_dict))
|
| 330 |
+
image_encoder_siglip = AutoModel.from_config(SiglipVisionConfig.from_dict(siglip_config_dict))
|
| 331 |
+
|
| 332 |
+
image_encoder_dino.requires_grad_(False)
|
| 333 |
+
image_encoder_dino = image_encoder_dino.to(memory_format=th.channels_last)
|
| 334 |
+
|
| 335 |
+
image_encoder_siglip.requires_grad_(False)
|
| 336 |
+
image_encoder_siglip = image_encoder_siglip.to(memory_format=th.channels_last)
|
| 337 |
+
self.image_encoder_dino = image_encoder_dino
|
| 338 |
+
self.image_encoder_siglip = image_encoder_siglip
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
def dino_normalization(self, encoder_output):
|
| 342 |
+
embeds = encoder_output.last_hidden_state
|
| 343 |
+
embeds_pooled = embeds[:, 0:1]
|
| 344 |
+
embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
|
| 345 |
+
return embeds
|
| 346 |
+
|
| 347 |
+
def siglip_normalization(self, encoder_output):
|
| 348 |
+
embeds = th.cat ([encoder_output.pooler_output[:, None, :], encoder_output.last_hidden_state], dim=1)
|
| 349 |
+
embeds_pooled = embeds[:, 0:1]
|
| 350 |
+
embeds = embeds / th.norm(embeds_pooled, dim=-1, keepdim=True)
|
| 351 |
+
return embeds
|
| 352 |
+
|
| 353 |
+
def forward(self, dino_in, siglip_in):
|
| 354 |
+
|
| 355 |
+
x_1 = self.image_encoder_dino(dino_in, output_hidden_states=True)
|
| 356 |
+
x_1_first = x_1.hidden_states[0]
|
| 357 |
+
x_1 = self.dino_normalization(x_1)
|
| 358 |
+
x_2 = self.image_encoder_siglip(siglip_in, output_hidden_states=True)
|
| 359 |
+
x_2_first = x_2.hidden_states[0]
|
| 360 |
+
x_2_first_pool = th.mean(x_2_first, dim=1, keepdim=True)
|
| 361 |
+
x_2_first = th.cat([x_2_first_pool, x_2_first], 1)
|
| 362 |
+
x_2 = self.siglip_normalization(x_2)
|
| 363 |
+
dino_embd = th.cat([x_1, x_1_first], -1)
|
| 364 |
+
siglip_embd = th.cat([x_2, x_2_first], -1)
|
| 365 |
+
return dino_embd, siglip_embd
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
class PatternAnalogyTrifuser(DiffusionPipeline):
|
| 369 |
+
r"""
|
| 370 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
| 371 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
| 372 |
+
"""
|
| 373 |
+
|
| 374 |
+
model_cpu_offload_seq = "bert->unet->vqvae"
|
| 375 |
+
|
| 376 |
+
analogy_input_processor: AnalogyInputProcessor
|
| 377 |
+
analogy_encoder: AnalogyEncoder
|
| 378 |
+
analogy_projector: AnalogyProjector
|
| 379 |
+
unet: UNet2DConditionModel
|
| 380 |
+
vae: AutoencoderKL
|
| 381 |
+
scheduler: KarrasDiffusionSchedulers
|
| 382 |
+
|
| 383 |
+
def __init__(self,
|
| 384 |
+
analogy_input_processor: AnalogyInputProcessor,
|
| 385 |
+
analogy_projector: AnalogyProjector,
|
| 386 |
+
analogy_encoder: AnalogyEncoder,
|
| 387 |
+
unet: UNet2DConditionModel,
|
| 388 |
+
vae: AutoencoderKL,
|
| 389 |
+
scheduler: KarrasDiffusionSchedulers,):
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
super().__init__()
|
| 393 |
+
self.register_modules(
|
| 394 |
+
analogy_input_processor=analogy_input_processor,
|
| 395 |
+
analogy_encoder=analogy_encoder,
|
| 396 |
+
analogy_projector=analogy_projector,
|
| 397 |
+
unet=unet,
|
| 398 |
+
vae=vae,
|
| 399 |
+
scheduler=scheduler,
|
| 400 |
+
)
|
| 401 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 402 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 403 |
+
|
| 404 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_image_variation.StableDiffusionImageVariationPipeline.check_inputs
|
| 405 |
+
def check_inputs(self, analogy_prompt, negative_analogy_prompt, height, width, callback_steps):
|
| 406 |
+
if (
|
| 407 |
+
not isinstance(analogy_prompt, th.Tensor)
|
| 408 |
+
and not isinstance(analogy_prompt, PIL.Image.Image)
|
| 409 |
+
and not isinstance(analogy_prompt, list)
|
| 410 |
+
):
|
| 411 |
+
raise ValueError(
|
| 412 |
+
"`analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
| 413 |
+
f" {type(analogy_prompt)}"
|
| 414 |
+
)
|
| 415 |
+
if not negative_analogy_prompt is None:
|
| 416 |
+
if (
|
| 417 |
+
not isinstance(negative_analogy_prompt, th.Tensor)
|
| 418 |
+
and not isinstance(negative_analogy_prompt, PIL.Image.Image)
|
| 419 |
+
and not isinstance(negative_analogy_prompt, list)
|
| 420 |
+
):
|
| 421 |
+
raise ValueError(
|
| 422 |
+
"`negative_analogy_prompt` contents have to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is"
|
| 423 |
+
f" {type(negative_analogy_prompt)}"
|
| 424 |
+
)
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 428 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 429 |
+
|
| 430 |
+
if (callback_steps is None) or (
|
| 431 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
| 432 |
+
):
|
| 433 |
+
raise ValueError(
|
| 434 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
| 435 |
+
f" {type(callback_steps)}."
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 439 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 440 |
+
shape = (
|
| 441 |
+
batch_size,
|
| 442 |
+
num_channels_latents,
|
| 443 |
+
int(height) // self.vae_scale_factor,
|
| 444 |
+
int(width) // self.vae_scale_factor,
|
| 445 |
+
)
|
| 446 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 447 |
+
raise ValueError(
|
| 448 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 449 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
if latents is None:
|
| 453 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 454 |
+
else:
|
| 455 |
+
latents = latents.to(device)
|
| 456 |
+
|
| 457 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 458 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 459 |
+
return latents
|
| 460 |
+
|
| 461 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
| 462 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
| 463 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
| 464 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
| 465 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
| 466 |
+
# and should be between [0, 1]
|
| 467 |
+
|
| 468 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 469 |
+
extra_step_kwargs = {}
|
| 470 |
+
if accepts_eta:
|
| 471 |
+
extra_step_kwargs["eta"] = eta
|
| 472 |
+
|
| 473 |
+
# check if the scheduler accepts generator
|
| 474 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
| 475 |
+
if accepts_generator:
|
| 476 |
+
extra_step_kwargs["generator"] = generator
|
| 477 |
+
return extra_step_kwargs
|
| 478 |
+
|
| 479 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 480 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
| 481 |
+
shape = (
|
| 482 |
+
batch_size,
|
| 483 |
+
num_channels_latents,
|
| 484 |
+
int(height) // self.vae_scale_factor,
|
| 485 |
+
int(width) // self.vae_scale_factor,
|
| 486 |
+
)
|
| 487 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 488 |
+
raise ValueError(
|
| 489 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 490 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 491 |
+
)
|
| 492 |
+
|
| 493 |
+
if latents is None:
|
| 494 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 495 |
+
else:
|
| 496 |
+
latents = latents.to(device)
|
| 497 |
+
|
| 498 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
| 499 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 500 |
+
return latents
|
| 501 |
+
|
| 502 |
+
def _encode_prompt(self, analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt):
|
| 503 |
+
r"""
|
| 504 |
+
Encodes the prompt into text encoder hidden states.
|
| 505 |
+
|
| 506 |
+
Args:
|
| 507 |
+
prompt (`str` or `List[str]`):
|
| 508 |
+
prompt to be encoded
|
| 509 |
+
device: (`torch.device`):
|
| 510 |
+
torch device
|
| 511 |
+
num_images_per_prompt (`int`):
|
| 512 |
+
number of images that should be generated per prompt
|
| 513 |
+
do_classifier_free_guidance (`bool`):
|
| 514 |
+
whether to use classifier free guidance or not
|
| 515 |
+
negative_prompt (`str` or `List[str]`):
|
| 516 |
+
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
|
| 517 |
+
if `guidance_scale` is less than `1`).
|
| 518 |
+
"""
|
| 519 |
+
weight_dtype = self.unet.dtype
|
| 520 |
+
dino_input, siglip_input = self.analogy_input_processor(analogy_prompt)
|
| 521 |
+
dino_input = dino_input.to(device=device).to(dtype=weight_dtype)
|
| 522 |
+
siglip_input = siglip_input.to(device=device).to(dtype=weight_dtype)
|
| 523 |
+
batch_size = dino_input.shape[1]
|
| 524 |
+
dino_input_reshaped = einops.rearrange(dino_input, "k b c h w -> (k b) c h w")
|
| 525 |
+
siglip_input_reshaped = einops.rearrange(siglip_input, "k b c h w -> (k b) c h w")
|
| 526 |
+
dino_enc, siglip_enc = self.analogy_encoder(dino_input_reshaped, siglip_input_reshaped)
|
| 527 |
+
image_embeddings = self.analogy_projector(dino_enc, siglip_enc, batch_size)
|
| 528 |
+
# Check size here.
|
| 529 |
+
|
| 530 |
+
bs_embed, seq_len, _ = image_embeddings.shape
|
| 531 |
+
image_embeddings = image_embeddings.repeat(num_images_per_prompt, 1, 1)
|
| 532 |
+
# get unconditional embeddings for classifier free guidance
|
| 533 |
+
if do_classifier_free_guidance:
|
| 534 |
+
uncond_images: List[str]
|
| 535 |
+
if negative_prompt is None:
|
| 536 |
+
uncond_images = [np.zeros((512, 512, 3)) + 0.5] * batch_size
|
| 537 |
+
elif type(negative_prompt) is not type(analogy_prompt):
|
| 538 |
+
raise TypeError(
|
| 539 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(analogy_prompt)} !="
|
| 540 |
+
f" {type(negative_prompt)}."
|
| 541 |
+
)
|
| 542 |
+
elif isinstance(negative_prompt, PIL.Image.Image):
|
| 543 |
+
uncond_images = [negative_prompt]
|
| 544 |
+
elif batch_size != len(negative_prompt):
|
| 545 |
+
raise ValueError(
|
| 546 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 547 |
+
f" {analogy_prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 548 |
+
" the batch size of `prompt`."
|
| 549 |
+
)
|
| 550 |
+
else:
|
| 551 |
+
uncond_images = negative_prompt
|
| 552 |
+
dino_neg, siglip_neg = self.analogy_input_processor.get_negative(dino_input, siglip_input)
|
| 553 |
+
|
| 554 |
+
dino_neg = dino_neg.to(device=device).to(dtype=weight_dtype)
|
| 555 |
+
siglip_neg = siglip_neg.to(device=device).to(dtype=weight_dtype)
|
| 556 |
+
dino_neg_reshaped = einops.rearrange(dino_neg, "k b c h w -> (k b) c h w")
|
| 557 |
+
siglip_neg_reshaped = einops.rearrange(siglip_neg, "k b c h w -> (k b) c h w")
|
| 558 |
+
dino_neg_enc, siglip_neg_enc = self.analogy_encoder(dino_neg_reshaped, siglip_neg_reshaped)
|
| 559 |
+
negative_prompt_embeds = self.analogy_projector(dino_neg_enc, siglip_neg_enc, batch_size)
|
| 560 |
+
|
| 561 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(num_images_per_prompt, 1, 1)
|
| 562 |
+
image_embeddings = th.cat([negative_prompt_embeds, image_embeddings])
|
| 563 |
+
|
| 564 |
+
|
| 565 |
+
return image_embeddings
|
| 566 |
+
|
| 567 |
+
@th.no_grad()
|
| 568 |
+
def __call__(
|
| 569 |
+
self,
|
| 570 |
+
analogy_prompt: Union[str, List[str]] = None,
|
| 571 |
+
num_inference_steps: int = 50,
|
| 572 |
+
guidance_scale: float = 7.5,
|
| 573 |
+
height: Optional[int] = None,
|
| 574 |
+
width: Optional[int] = None,
|
| 575 |
+
negative_analogy_prompt: Optional[Union[str, List[str]]] = None,
|
| 576 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 577 |
+
eta: float = 0.0,
|
| 578 |
+
generator: Optional[Union[th.Generator, List[th.Generator]]] = None,
|
| 579 |
+
latents: Optional[th.FloatTensor] = None,
|
| 580 |
+
output_type: Optional[str] = "pil",
|
| 581 |
+
return_dict: bool = True,
|
| 582 |
+
callback: Optional[Callable[[int, int, th.Tensor], None]] = None,
|
| 583 |
+
callback_steps: int = 1,
|
| 584 |
+
start_step: int = 0,
|
| 585 |
+
):
|
| 586 |
+
r"""
|
| 587 |
+
The call function to the pipeline for generation.
|
| 588 |
+
|
| 589 |
+
Args:
|
| 590 |
+
image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`):
|
| 591 |
+
The image prompt or prompts to guide the image generation.
|
| 592 |
+
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
|
| 593 |
+
The height in pixels of the generated image.
|
| 594 |
+
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
|
| 595 |
+
The width in pixels of the generated image.
|
| 596 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 597 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 598 |
+
expense of slower inference.
|
| 599 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
| 600 |
+
A higher guidance scale value encourages the model to generate images closely linked to the text
|
| 601 |
+
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
| 602 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 603 |
+
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
| 604 |
+
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
| 605 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 606 |
+
The number of images to generate per prompt.
|
| 607 |
+
eta (`float`, *optional*, defaults to 0.0):
|
| 608 |
+
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
|
| 609 |
+
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
| 610 |
+
generator (`torch.Generator`, *optional*):
|
| 611 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 612 |
+
generation deterministic.
|
| 613 |
+
latents (`torch.Tensor`, *optional*):
|
| 614 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 615 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 616 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 617 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 618 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 619 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 620 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 621 |
+
plain tuple.
|
| 622 |
+
callback (`Callable`, *optional*):
|
| 623 |
+
A function that calls every `callback_steps` steps during inference. The function is called with the
|
| 624 |
+
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
|
| 625 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
| 626 |
+
The frequency at which the `callback` function is called. If not specified, the callback is called at
|
| 627 |
+
every step.
|
| 628 |
+
|
| 629 |
+
Examples:
|
| 630 |
+
|
| 631 |
+
```py
|
| 632 |
+
>>> from diffusers import VersatileDiffusionImageVariationPipeline
|
| 633 |
+
>>> import torch
|
| 634 |
+
>>> import requests
|
| 635 |
+
>>> from io import BytesIO
|
| 636 |
+
>>> from PIL import Image
|
| 637 |
+
|
| 638 |
+
>>> # let's download an initial image
|
| 639 |
+
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
|
| 640 |
+
|
| 641 |
+
>>> response = requests.get(url)
|
| 642 |
+
>>> image = Image.open(BytesIO(response.content)).convert("RGB")
|
| 643 |
+
|
| 644 |
+
>>> pipe = VersatileDiffusionImageVariationPipeline.from_pretrained(
|
| 645 |
+
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16
|
| 646 |
+
... )
|
| 647 |
+
>>> pipe = pipe.to("cuda")
|
| 648 |
+
|
| 649 |
+
>>> generator = torch.Generator(device="cuda").manual_seed(0)
|
| 650 |
+
>>> image = pipe(image, generator=generator).images[0]
|
| 651 |
+
>>> image.save("./car_variation.png")
|
| 652 |
+
```
|
| 653 |
+
|
| 654 |
+
Returns:
|
| 655 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
| 656 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
|
| 657 |
+
otherwise a `tuple` is returned where the first element is a list with the generated images.
|
| 658 |
+
"""
|
| 659 |
+
|
| 660 |
+
# 1. Check inputs. Raise error if not correct
|
| 661 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 662 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 663 |
+
|
| 664 |
+
# 1. Check inputs. Raise error if not correct
|
| 665 |
+
self.check_inputs(analogy_prompt, negative_analogy_prompt, height, width, callback_steps)
|
| 666 |
+
|
| 667 |
+
# 2. Define call parameters
|
| 668 |
+
if isinstance(analogy_prompt, list):
|
| 669 |
+
batch_size = len(analogy_prompt)
|
| 670 |
+
elif isinstance(analogy_prompt, tuple):
|
| 671 |
+
batch_size = 1
|
| 672 |
+
else:
|
| 673 |
+
raise ValueError(
|
| 674 |
+
f"`analogy_prompt` has to be a list of images or a tuple of images but is of type {type(analogy_prompt)}"
|
| 675 |
+
)
|
| 676 |
+
device = self._execution_device
|
| 677 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 678 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 679 |
+
# corresponds to doing no classifier free guidance.
|
| 680 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 681 |
+
|
| 682 |
+
# 3. Encode input prompt
|
| 683 |
+
analogy_embeddings = self._encode_prompt(
|
| 684 |
+
analogy_prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_analogy_prompt
|
| 685 |
+
)
|
| 686 |
+
|
| 687 |
+
# 4. Prepare timesteps
|
| 688 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 689 |
+
|
| 690 |
+
timesteps = self.scheduler.timesteps
|
| 691 |
+
# Now this should be from start step onwards
|
| 692 |
+
timesteps = timesteps[start_step:]
|
| 693 |
+
# 5. Prepare latent variables
|
| 694 |
+
num_channels_latents = self.unet.config.in_channels
|
| 695 |
+
latents = self.prepare_latents(
|
| 696 |
+
batch_size * num_images_per_prompt,
|
| 697 |
+
num_channels_latents,
|
| 698 |
+
height,
|
| 699 |
+
width,
|
| 700 |
+
analogy_embeddings.dtype,
|
| 701 |
+
device,
|
| 702 |
+
generator,
|
| 703 |
+
latents,
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
# 6. Prepare extra step kwargs.
|
| 707 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 708 |
+
|
| 709 |
+
# 7. Denoising loop
|
| 710 |
+
for i, t in enumerate(self.progress_bar(timesteps)):
|
| 711 |
+
# expand the latents if we are doing classifier free guidance
|
| 712 |
+
latent_model_input = th.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 713 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 714 |
+
|
| 715 |
+
# predict the noise residual
|
| 716 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=analogy_embeddings).sample
|
| 717 |
+
|
| 718 |
+
# perform guidance
|
| 719 |
+
if do_classifier_free_guidance:
|
| 720 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 721 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 722 |
+
|
| 723 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 724 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
| 725 |
+
|
| 726 |
+
# call the callback, if provided
|
| 727 |
+
if callback is not None and i % callback_steps == 0:
|
| 728 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
| 729 |
+
callback(step_idx, t, latents)
|
| 730 |
+
|
| 731 |
+
if not output_type == "latent":
|
| 732 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
| 733 |
+
else:
|
| 734 |
+
image = latents
|
| 735 |
+
|
| 736 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 737 |
+
|
| 738 |
+
if not return_dict:
|
| 739 |
+
return (image,)
|
| 740 |
+
|
| 741 |
+
return ImagePipelineOutput(images=image)
|