File size: 8,468 Bytes
d83c313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
"""
ADOBE CONFIDENTIAL
Copyright 2024 Adobe
All Rights Reserved.
NOTICE: All information contained herein is, and remains
the property of Adobe and its suppliers, if any. The intellectual
and technical concepts contained herein are proprietary to Adobe
and its suppliers and are protected by all applicable intellectual
property laws, including trade secret and copyright laws.
Dissemination of this information or reproduction of this material
is strictly forbidden unless prior written permission is obtained
from Adobe.
"""
import einops
import numpy as np
import torch as th
import torch.nn as nn
from diffusers import ModelMixin
from diffusers.configuration_utils import ConfigMixin, register_to_config
# REf: https://github.com/tatp22/multidim-positional-encoding/tree/master
OUT_SIZE = 768
IN_SIZE = 2048
def get_emb(sin_inp):
"""
Gets a base embedding for one dimension with sin and cos intertwined
"""
emb = th.stack((sin_inp.sin(), sin_inp.cos()), dim=-1)
return th.flatten(emb, -2, -1)
class PositionalEncoding1D(nn.Module):
def __init__(self, channels):
"""
:param channels: The last dimension of the tensor you want to apply pos emb to.
"""
super(PositionalEncoding1D, self).__init__()
self.org_channels = channels
channels = int(np.ceil(channels / 2) * 2)
self.channels = channels
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
self.register_buffer("inv_freq", inv_freq)
self.register_buffer("cached_penc", None, persistent=False)
def forward(self, tensor):
"""
:param tensor: A 3d tensor of size (batch_size, x, ch)
:return: Positional Encoding Matrix of size (batch_size, x, ch)
"""
if len(tensor.shape) != 3:
raise RuntimeError("The input tensor has to be 3d!")
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
return self.cached_penc
self.cached_penc = None
batch_size, x, orig_ch = tensor.shape
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
emb_x = get_emb(sin_inp_x)
emb = th.zeros((x, self.channels), device=tensor.device, dtype=tensor.dtype)
emb[:, : self.channels] = emb_x
self.cached_penc = emb[None, :, :orig_ch].repeat(batch_size, 1, 1)
return self.cached_penc
class PositionalEncoding3D(nn.Module):
def __init__(self, channels):
"""
:param channels: The last dimension of the tensor you want to apply pos emb to.
"""
super(PositionalEncoding3D, self).__init__()
self.org_channels = channels
channels = int(np.ceil(channels / 6) * 2)
if channels % 2:
channels += 1
self.channels = channels
inv_freq = 1.0 / (10000 ** (th.arange(0, channels, 2).float() / channels))
self.register_buffer("inv_freq", inv_freq)
self.register_buffer("cached_penc", None, persistent=False)
def forward(self, tensor):
"""
:param tensor: A 5d tensor of size (batch_size, x, y, z, ch)
:return: Positional Encoding Matrix of size (batch_size, x, y, z, ch)
"""
if len(tensor.shape) != 5:
raise RuntimeError("The input tensor has to be 5d!")
if self.cached_penc is not None and self.cached_penc.shape == tensor.shape:
return self.cached_penc
self.cached_penc = None
batch_size, x, y, z, orig_ch = tensor.shape
pos_x = th.arange(x, device=tensor.device, dtype=self.inv_freq.dtype)
pos_y = th.arange(y, device=tensor.device, dtype=self.inv_freq.dtype)
pos_z = th.arange(z, device=tensor.device, dtype=self.inv_freq.dtype)
sin_inp_x = th.einsum("i,j->ij", pos_x, self.inv_freq)
sin_inp_y = th.einsum("i,j->ij", pos_y, self.inv_freq)
sin_inp_z = th.einsum("i,j->ij", pos_z, self.inv_freq)
emb_x = get_emb(sin_inp_x).unsqueeze(1).unsqueeze(1)
emb_y = get_emb(sin_inp_y).unsqueeze(1)
emb_z = get_emb(sin_inp_z)
emb = th.zeros(
(x, y, z, self.channels * 3),
device=tensor.device,
dtype=tensor.dtype,
)
emb[:, :, :, : self.channels] = emb_x
emb[:, :, :, self.channels : 2 * self.channels] = emb_y
emb[:, :, :, 2 * self.channels :] = emb_z
self.cached_penc = emb[None, :, :, :, :orig_ch].repeat(batch_size, 1, 1, 1, 1)
return self.cached_penc
class AnalogyProjector(ModelMixin, ConfigMixin):
@register_to_config
def __init__(self):
super(AnalogyProjector, self).__init__()
self.projector = DinoSiglipMixer()
self.pos_embd_1D = PositionalEncoding1D(OUT_SIZE)
self.pos_embd_3D = PositionalEncoding3D(OUT_SIZE)
def forward(self, dino_in, siglip_in, batch_size):
image_embeddings = self.projector(dino_in, siglip_in)
image_embeddings = einops.rearrange(image_embeddings, '(k b) t d -> b k t d', b=batch_size)
image_embeddings = self.position_embd(image_embeddings)
return image_embeddings
def position_embd(self, image_embeddings, concat=False):
canvas_embd = image_embeddings[:, :, 1:, :]
batch_size = canvas_embd.shape[0]
type_size = canvas_embd.shape[1]
xy_size = canvas_embd.shape[2]
x_size = int(xy_size ** 0.5)
canvas_embd = canvas_embd.reshape(batch_size, type_size, x_size, x_size, -1)
if concat:
canvas_embd = th.cat([canvas_embd, self.pos_embd_3D(canvas_embd)], -1)
else:
canvas_embd = self.pos_embd_3D(canvas_embd) + canvas_embd
canvas_embd = canvas_embd.reshape(batch_size, type_size, xy_size, -1)
class_embd = image_embeddings[:, :, 0, :]
if concat:
class_embd = th.cat([class_embd, self.pos_embd_1D(class_embd)], -1)
else:
class_embd = self.pos_embd_1D(class_embd) + class_embd
all_embd_list = []
for i in range(type_size):
all_embd_list.append(class_embd[:, i:i+1])
all_embd_list.append(canvas_embd[:, i])
image_embeddings = th.cat(all_embd_list, 1)
return image_embeddings
class HighLowMixer(th.nn.Module):
def __init__(self, in_size=IN_SIZE, out_size=OUT_SIZE):
super().__init__()
mid_size = (in_size + out_size) // 2
self.lower_projector = th.nn.Sequential(
th.nn.LayerNorm(IN_SIZE//2),
th.nn.SiLU()
)
self.upper_projector = th.nn.Sequential(
th.nn.LayerNorm(IN_SIZE//2),
th.nn.SiLU()
)
self.projectors = th.nn.ModuleList([
# add layer norm
th.nn.Linear(in_size, mid_size),
th.nn.SiLU(),
th.nn.Linear(mid_size, out_size)
])
# initialize
for proj in self.projectors:
if isinstance(proj, th.nn.Linear):
th.nn.init.xavier_uniform_(proj.weight)
th.nn.init.zeros_(proj.bias)
def forward(self, lower_in, upper_in, ):
# ALso format lower_in
lower_in = self.lower_projector(lower_in)
upper_in = self.upper_projector(upper_in)
x = th.cat([lower_in, upper_in], -1)
for proj in self.projectors:
x = proj(x)
return x
class DinoSiglipMixer(th.nn.Module):
def __init__(self, in_size=OUT_SIZE * 2, out_size=OUT_SIZE):
super().__init__()
self.dino_projector = HighLowMixer()
self.siglip_projector = HighLowMixer()
self.projectors = th.nn.Sequential(
th.nn.SiLU(),
th.nn.Linear(in_size, out_size),
)
# initialize
for proj in self.projectors:
if isinstance(proj, th.nn.Linear):
th.nn.init.xavier_uniform_(proj.weight)
th.nn.init.zeros_(proj.bias)
def forward(self, dino_in, siglip_in):
# ALso format lower_in
lower, upper = th.chunk(dino_in, 2, -1)
dino_out = self.dino_projector(lower, upper)
lower, upper = th.chunk(siglip_in, 2, -1)
siglip_out = self.siglip_projector(lower, upper)
x = th.cat([dino_out, siglip_out], -1)
for proj in self.projectors:
x = proj(x)
return x
|