MOD README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,77 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
-
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
This is the model card of a 馃 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **
|
24 |
-
- **
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
|
111 |
-
|
112 |
|
113 |
-
|
114 |
|
115 |
-
|
|
|
|
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
|
187 |
-
|
188 |
|
189 |
-
##
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
194 |
|
195 |
-
|
|
|
196 |
|
197 |
-
|
|
|
|
|
198 |
|
199 |
-
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- catalan
|
5 |
+
- natural-language-processing
|
6 |
+
- text-generation
|
7 |
+
- gpt2
|
8 |
+
license: mit
|
9 |
---
|
10 |
|
11 |
+
# Model Card for CatGPT
|
|
|
|
|
|
|
12 |
|
13 |
+
CatGPT is a Catalan natural language model inspired by GPT-2. It is designed to generate coherent and contextually relevant text in Catalan. The model is intended primarily for educational and experimental purposes, providing a lightweight tool for exploring natural language processing in Catalan.
|
14 |
|
15 |
## Model Details
|
16 |
|
17 |
### Model Description
|
18 |
|
19 |
+
CatGPT follows the architecture of GPT-2 but is trained from scratch with a specific focus on the Catalan language. The model's smaller size makes it accessible and easy to deploy, though it does not aim for high-performance text generation. Its design choices ensure it can be used efficiently for training and inference within the Catalan language context.
|
|
|
|
|
20 |
|
21 |
+
- **Developed by:** Roger Baiges
|
22 |
+
- **Model type:** Causal Language Model (GPT-2 based)
|
23 |
+
- **Language(s):** Catalan
|
24 |
+
- **License:** MIT
|
25 |
+
- **Finetuned from model:** Trained from scratch
|
|
|
|
|
26 |
|
27 |
+
### Model Sources
|
28 |
|
29 |
+
- **Repository:** [GitHub - CatGPT](https://github.com/baiges/CatGPT)
|
30 |
+
- **Demo:** [CatGPT Demo](https://huggingface.co/spaces/baiges/CatGPT)
|
|
|
|
|
|
|
31 |
|
32 |
## Uses
|
33 |
|
|
|
|
|
34 |
### Direct Use
|
35 |
|
36 |
+
CatGPT can be used as a text generator in Catalan. It's suitable for creating educational content, generating sample text, or experimenting with language modeling in Catalan.
|
37 |
|
38 |
+
### Downstream Use
|
39 |
|
40 |
+
The model can be fine-tuned for specific tasks like text completion, dialogue systems, or creative writing in Catalan.
|
|
|
|
|
|
|
|
|
41 |
|
42 |
### Out-of-Scope Use
|
43 |
|
44 |
+
This model is not suitable for tasks requiring high accuracy or dealing with complex language understanding, such as legal or medical text generation. It is also not recommended for use in generating content that requires a deep understanding of context or nuance.
|
|
|
|
|
45 |
|
46 |
## Bias, Risks, and Limitations
|
47 |
|
48 |
+
### Biases
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
As with most language models, CatGPT may reflect biases present in the training data. Given the training datasets are primarily web-scraped data, the model might inadvertently generate biased or inappropriate content.
|
51 |
|
52 |
+
### Limitations
|
53 |
|
54 |
+
- The model's small size limits its ability to generate high-quality text.
|
55 |
+
- It may not perform well in generating text that requires nuanced understanding or in contexts outside the training data.
|
56 |
+
- The model may struggle with certain dialects or less common expressions in Catalan.
|
57 |
|
58 |
+
### Recommendations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
Users should monitor outputs for bias and inappropriate content. Fine-tuning with carefully curated data can help mitigate some biases.
|
61 |
|
62 |
+
## How to Get Started with the Model
|
63 |
|
64 |
+
To use CatGPT, you can load the model and tokenizer as follows:
|
65 |
|
66 |
+
```python
|
67 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
68 |
|
69 |
+
tokenizer = AutoTokenizer.from_pretrained("baiges/CatGPT")
|
70 |
+
model = AutoModelForCausalLM.from_pretrained("baiges/CatGPT")
|
71 |
|
72 |
+
input_text = "La intel路lig猫ncia artificial"
|
73 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
74 |
+
outputs = model.generate(inputs.input_ids, max_length=100, num_return_sequences=1)
|
75 |
|
76 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
77 |
+
print(generated_text)
|