--- library_name: transformers language: - jv license: apache-2.0 base_model: openai/whisper-tiny tags: - whisper - javanese - asr - generated_from_trainer datasets: - jv_id_asr_split metrics: - wer model-index: - name: Whisper Tiny Java results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: jv_id_asr_split type: jv_id_asr_split config: jv_id_asr_source split: None args: jv_id_asr_source metrics: - name: Wer type: wer value: 0.6471586421539112 --- # Whisper Tiny Java This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the jv_id_asr_split dataset. It achieves the following results on the evaluation set: - Loss: 0.2792 - Wer: 0.6472 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.528 | 0.8643 | 500 | 0.4467 | 0.4770 | | 0.3702 | 1.7277 | 1000 | 0.3424 | 0.5528 | | 0.2988 | 2.5946 | 1500 | 0.3031 | 0.5552 | | 0.2607 | 3.4581 | 2000 | 0.2859 | 0.6485 | | 0.2481 | 4.3215 | 2500 | 0.2792 | 0.6472 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.6.0+cu126 - Datasets 3.4.0 - Tokenizers 0.21.1