--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - jv_id_asr_split metrics: - wer model-index: - name: whisper-tiny-javanese-openslr-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: jv_id_asr_split type: jv_id_asr_split config: jv_id_asr_source split: None args: jv_id_asr_source metrics: - name: Wer type: wer value: 0.6603038810125197 --- # whisper-tiny-javanese-openslr-v2 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the jv_id_asr_split dataset. It achieves the following results on the evaluation set: - Loss: 0.3406 - Wer: 0.6603 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.6676 | 0.8643 | 500 | 0.5638 | 0.4824 | | 0.4792 | 1.7277 | 1000 | 0.4284 | 0.5330 | | 0.3988 | 2.5912 | 1500 | 0.3772 | 0.5687 | | 0.3565 | 3.4546 | 2000 | 0.3528 | 0.6204 | | 0.3386 | 4.3181 | 2500 | 0.3406 | 0.6603 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.6.0+cu126 - Datasets 3.3.2 - Tokenizers 0.21.0